Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 15(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35745609

RESUMEN

In this study, silver nanoparticles (AgNPs) are synthesized through a green approach by employing Rosa indica L. petal (RE) extracts as reducing and stabilizing agents, which are extracted using three different solvents: ethanol (Et), acetone (Ac), and water (Aq). The phase formation of the AgNPs is confirmed using X-ray diffraction (XRD). Morphological analysis is performed using a field-emission scanning electron microscope (FESEM), which reveals that the AgNPs are spherical in shape. The size is estimated using ImageJ software, which is found to be ~12, 18, and 770 nm for RE-Ac-Ag, RE-Et-Ag, and RE-Aq-Ag, respectively. The phytochemicals of Rosa indica L. petals involved in the formation of the AgNPs are studied using Fourier transform infrared spectroscopy (FTIR). Finally, these materials are studied for their antibacterial, antidiabetic, antioxidant, and hemolytic activity, as well as cell toxicity properties. The materials, RE-Ac-Ag and RE-Et-Ag, are found to be more effective than RE-Aq-Ag in inhibiting E. coli (Gram-negative bacteria) and S. aureus (Gram-positive bacteria). Hemolytic studies reveal that all of the samples show concentration-dependent activity up to 50 µg/mL. RE-Ac-Ag and RE-Et-Ag exhibit nonhemolytic behavior, whereas RE-Aq-Ag remains nonhemolytic until 100 µg/mL. The antidiabetic ability of the AgNPs is evaluated using α-amylase inhibition assay (DNSA assay) and α-glucosidase inhibition assay. The results are found to be effective, with IC50 values of α-amylase and α-glycosidase being 50, 50, and 75 µg/mL for RE-Et-Ag, RE-Ac-Ag, and RE-Aq-Ag, respectively. DPPH assay shows that the AgNPs inhibited the antioxidants well, with IC50 values of 40 µg/mL for RE-Et-Ag and RE-Ac-Ag and 60 µg/mL for RE-Aq-Ag. The toxicity study reveals that the AgNPs show size- and concentration-dependent behavior. Overall, it is realized from the findings that RE-Ac-Ag, RE-Et-Ag, and RE-Aq-Ag show size-dependent antibacterial, antidiabetic, and toxicity properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA