Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 582(7810): 46-49, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494079

RESUMEN

Free-electron beams are versatile probes of microscopic structure and composition1,2, and have revolutionized atomic-scale imaging in several fields, from solid-state physics to structural biology3. Over the past decade, the manipulation and interaction of electrons with optical fields have enabled considerable progress in imaging methods4, near-field electron acceleration5,6, and four-dimensional microscopy techniques with high temporal and spatial resolution7. However, electron beams typically couple only weakly to optical excitations, and emerging applications in electron control and sensing8-11 require large enhancements using tailored fields and interactions. Here we couple a free-electron beam to a travelling-wave resonant cavity mode. The enhanced interaction with the optical whispering-gallery modes of dielectric microresonators induces a strong phase modulation on co-propagating electrons, which leads to a spectral broadening of 700 electronvolts, corresponding to the absorption and emission of hundreds of photons. By mapping the near-field interaction with ultrashort electron pulses in space and time, we trace the lifetime of the the microresonator following a femtosecond excitation and observe the spectral response of the cavity. The natural matching of free electrons to these quintessential optical modes could enable the application of integrated photonics technology in electron microscopy, with broad implications for attosecond structuring, probing quantum emitters and possible electron-light entanglement.

2.
Opt Express ; 31(24): 39757-39764, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38041291

RESUMEN

We present a novel denoising scheme for spectroscopy experiments employing broadband light sources and demonstrate its capabilities using transient absorption measurements with a high-harmonic source. Our scheme relies on measuring the probe spectra before and after interacting with the sample while capturing correlations between spectral components through machine learning approaches. With the present setup we achieve up to a tenfold improvement in noise suppression in XUV transient absorption spectra compared to the conventional pump on/ pump off referencing method. By utilizing strong spectral correlations in source fluctuations, the use of an artificial neural network facilitates pixel-wise noise reduction without requiring wavelength calibration of the reference spectrum. Our method can be adapted to a wide range of experiments and may be particularly advantageous for low repetition-rate systems, such as free electron lasers as well as laser-driven plasma and HHG sources. The enhanced sensitivity enables the investigation of subtle electron and lattice dynamics in the weak excitation regime, which is relevant for studying photovoltaics and photo-induced phase transitions in strongly correlated materials.

3.
Opt Express ; 23(15): 19911-21, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367651

RESUMEN

We study extreme-ultraviolet wave propagation within optically thick nanostructures by means of high-resolution coherent diffractive imaging using high-harmonic radiation. Exit waves from different objects are reconstructed by phase retrieval algorithms, and are shown to be dominated by waveguiding within the sample. The experiments provide a direct visualization of extreme-ultraviolet guided modes, and demonstrate that multiple scattering is a generic feature in extruded nanoscale geometries. The observations are successfully reproduced in numerical and semi-analytical simulations.

4.
Phys Rev Lett ; 111(8): 085001, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010446

RESUMEN

We present a study of the highly nonlinear optical excitation of noble gases in tapered hollow waveguides using few-femtosecond laser pulses. The local plasmonic field enhancement induces the generation of a nanometric plasma, resulting in incoherent extreme-ultraviolet fluorescence from optical transitions of neutral and ionized xenon, argon, and neon. Despite sufficient intensity in the waveguide, high-order harmonic generation is not observed. The fluorescent emission exhibits a strong bistability manifest as an intensity hysteresis, giving strong indications for multistep collisional excitations.

5.
Nat Commun ; 14(1): 6545, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848420

RESUMEN

In electron microscopy, detailed insights into nanoscale optical properties of materials are gained by spontaneous inelastic scattering leading to electron-energy loss and cathodoluminescence. Stimulated scattering in the presence of external sample excitation allows for mode- and polarization-selective photon-induced near-field electron microscopy (PINEM). This process imprints a spatial phase profile inherited from the optical fields onto the wave function of the probing electrons. Here, we introduce Lorentz-PINEM for the full-field, non-invasive imaging of complex optical near fields at high spatial resolution. We use energy-filtered defocus phase-contrast imaging and iterative phase retrieval to reconstruct the phase distribution of interfering surface-bound modes on a plasmonic nanotip. Our approach is universally applicable to retrieve the spatially varying phase of nanoscale fields and topological modes.

6.
Nat Commun ; 12(1): 3723, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140484

RESUMEN

Strong-field methods in solids enable new strategies for ultrafast nonlinear spectroscopy and provide all-optical insights into the electronic properties of condensed matter in reciprocal and real space. Additionally, solid-state media offers unprecedented possibilities to control high-harmonic generation using modified targets or tailored excitation fields. Here we merge these important points and demonstrate circularly-polarized high-harmonic generation with polarization-matched excitation fields for spectroscopy of chiral electronic properties at surfaces. The sensitivity of our approach is demonstrated for structural helicity and termination-mediated ferromagnetic order at the surface of silicon-dioxide and magnesium oxide, respectively. Circularly polarized radiation emanating from a solid sample now allows to add basic symmetry properties as chirality to the arsenal of strong-field spectroscopy in solids. Together with its inherent temporal (femtosecond) resolution and non-resonant broadband spectrum, the polarization control of high harmonics from condensed matter can illuminate ultrafast and strong field dynamics of surfaces, buried layers or thin films.

7.
Nat Commun ; 12(1): 6337, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732725

RESUMEN

Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on the relevant timescales has remained challenging. Here, we demonstrate ultrafast high-harmonic nanoscopy employing circularly polarized high-harmonic radiation for real-space imaging of femtosecond magnetization dynamics. We map quenched magnetic domains and localized spin structures in Co/Pd multilayers with a sub-wavelength spatial resolution down to 16 nm, and strobosocopically trace the local magnetization dynamics with 40 fs temporal resolution. Our compact experimental setup demonstrates the highest spatio-temporal resolution of magneto-optical imaging to date. Facilitating ultrafast imaging with high sensitivity to chiral and linear dichroism, we envisage a wide range of applications spanning magnetism, phase transitions, and carrier dynamics.

8.
Light Sci Appl ; 10(1): 82, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859160

RESUMEN

The interplay between free electrons, light, and matter offers unique prospects for space, time, and energy resolved optical material characterization, structured light generation, and quantum information processing. Here, we study the nanoscale features of spontaneous and stimulated electron-photon interactions mediated by localized surface plasmon resonances at the tips of a gold nanostar using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Supported by numerical electromagnetic boundary-element method (BEM) calculations, we show that the different coupling mechanisms probed by EELS, CL, and PINEM feature the same spatial dependence on the electric field distribution of the tip modes. However, the electron-photon interaction strength is found to vary with the incident electron velocity, as determined by the spatial Fourier transform of the electric near-field component parallel to the electron trajectory. For the tightly confined plasmonic tip resonances, our calculations suggest an optimum coupling velocity at electron energies as low as a few keV. Our results are discussed in the context of more complex geometries supporting multiple modes with spatial and spectral overlap. We provide fundamental insights into spontaneous and stimulated electron-light-matter interactions with key implications for research on (quantum) coherent optical phenomena at the nanoscale.

9.
Struct Dyn ; 4(4): 044024, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28580366

RESUMEN

We present the design and fabrication of a micrometer-scale electron gun for the implementation of ultrafast low-energy electron diffraction from surfaces. A multi-step process involving photolithography and focused-ion-beam nanostructuring is used to assemble and electrically contact the photoelectron gun, which consists of a nanotip photocathode in a Schottky geometry and an einzel lens for beam collimation. We characterize the low-energy electron pulses by a transient electric field effect and achieve pulse durations of 1.3 ps at an electron energy of 80 eV. First diffraction images in a backscattering geometry (at 50 eV electron energy) are shown.

10.
Science ; 357(6348): 303-306, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28729510

RESUMEN

The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.

11.
Ultramicroscopy ; 176: 63-73, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28139341

RESUMEN

We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams.

12.
Sci Adv ; 3(12): eaao4641, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29250601

RESUMEN

This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA