Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524407

RESUMEN

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Asunto(s)
Neuralgia , Nociceptores , Animales , Técnicas de Transferencia de Gen , Ratones , Neuralgia/etiología , Neuralgia/terapia , Células del Asta Posterior , Médula Espinal , Asta Dorsal de la Médula Espinal , Porcinos
2.
BMC Microbiol ; 22(1): 63, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216552

RESUMEN

BACKGROUND: The microbiome alterations are associated with cancer growth and may influence the immune system and response to therapy. Particularly, the gut microbiome has been recently shown to modulate response to melanoma immunotherapy. However, the role of the skin microbiome has not been well explored in the skin tumour microenvironment and the link between the gut microbiome and skin microbiome has not been investigated in melanoma progression. Therefore, the aim of the present study was to examine associations between dysbiosis in the skin and gut microbiome and the melanoma growth using MeLiM porcine model of melanoma progression and spontaneous regression. RESULTS: Parallel analysis of cutaneous microbiota and faecal microbiota of the same individuals was performed in 8 to 12 weeks old MeLiM piglets. The bacterial composition of samples was analysed by high throughput sequencing of the V4-V5 region of the 16S rRNA gene. A significant difference in microbiome diversity and richness between melanoma tissue and healthy skin and between the faecal microbiome of MeLiM piglets and control piglets were observed. Both Principal Coordinate Analysis and Non-metric multidimensional scaling revealed dissimilarities between different bacterial communities. Linear discriminant analysis effect size at the genus level determined different potential biomarkers in multiple bacterial communities. Lactobacillus, Clostridium sensu stricto 1 and Corynebacterium 1 were the most discriminately higher genera in the healthy skin microbiome, while Fusobacterium, Trueperella, Staphylococcus, Streptococcus and Bacteroides were discriminately abundant in melanoma tissue microbiome. Bacteroides, Fusobacterium and Escherichia-Shigella were associated with the faecal microbiota of MeLiM piglets. Potential functional pathways analysis based on the KEGG database indicated significant differences in the predicted profile metabolisms between the healthy skin microbiome and melanoma tissue microbiome. The faecal microbiome of MeLiM piglets was enriched by genes related to membrane transports pathways allowing for the increase of intestinal permeability and alteration of the intestinal mucosal barrier. CONCLUSION: The associations between melanoma progression and dysbiosis in the skin microbiome as well as dysbiosis in the gut microbiome were identified. Results provide promising information for further studies on the local skin and gut microbiome involvement in melanoma progression and may support the development of new therapeutic approaches.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Microbiota , Animales , Bacterias/genética , Disbiosis/microbiología , Heces/microbiología , Fusobacterium , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Porcinos , Microambiente Tumoral
3.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628406

RESUMEN

(1) Background: Huntington's disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients' plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.


Asunto(s)
Vesículas Extracelulares , Enfermedad de Huntington , Animales , Biomarcadores , Vesículas Extracelulares/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasma/metabolismo , Porcinos
4.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920936

RESUMEN

Huntington's disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.


Asunto(s)
Exosomas/metabolismo , Enfermedad de Huntington/metabolismo , Animales , Sistemas de Liberación de Medicamentos , Humanos , Proteína Huntingtina/metabolismo , Modelos Biológicos , Pliegue de Proteína
5.
Mol Ther ; 26(9): 2163-2177, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30007561

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Previously, we showed strong huntingtin reduction and prevention of neuronal dysfunction in HD rodents using an engineered microRNA targeting human huntingtin, delivered via adeno-associated virus (AAV) serotype 5 vector with a transgene encoding an engineered miRNA against HTT mRNA (AAV5-miHTT). One of the challenges of rodents as a model of neurodegenerative diseases is their relatively small brain, making successful translation to the HD patient difficult. This is particularly relevant for gene therapy approaches, where distribution achieved upon local administration into the parenchyma is likely dependent on brain size and structure. Here, we aimed to demonstrate the translation of huntingtin-lowering gene therapy to a large-animal brain. We investigated the feasibility, efficacy, and tolerability of one-time intracranial administration of AAV5-miHTT in the transgenic HD (tgHD) minipig model. We detected widespread dose-dependent distribution of AAV5-miHTT throughout the tgHD minipig brain that correlated with the engineered microRNA expression. Both human mutant huntingtin mRNA and protein were significantly reduced in all brain regions transduced by AAV5-miHTT. The combination of widespread vector distribution and extensive huntingtin lowering observed with AAV5-miHTT supports the translation of a huntingtin-lowering gene therapy for HD from preclinical studies into the clinic.


Asunto(s)
Terapia Genética/métodos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Animales , Animales Modificados Genéticamente , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Humanos , Enfermedad de Huntington/genética , MicroARNs/genética , MicroARNs/metabolismo , Porcinos , Porcinos Enanos , Expansión de Repetición de Trinucleótido/genética
6.
Int J Mol Sci ; 18(12)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29236046

RESUMEN

Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.


Asunto(s)
Citocinas/análisis , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Humanos , Inmunoensayo , Inmunoterapia , Espectrometría de Masas , Melanoma/metabolismo , Melanoma/terapia , Análisis por Matrices de Proteínas , Proteómica , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/terapia , Microambiente Tumoral
7.
Brain Pathol ; : e13265, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705944

RESUMEN

Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.

8.
Microbes Infect ; 25(7): 105146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37142116

RESUMEN

PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αß-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Anticuerpos Antivirales , Epítopos , Linfocitos B
9.
Front Immunol ; 14: 1292381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283357

RESUMEN

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective: We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods: We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results: Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion: The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Anticuerpos Antivirales , Vacunas Atenuadas , Sistema Inmunológico
10.
Methods Mol Biol ; 2520: 335-360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35579839

RESUMEN

The unique properties of stem cells to self-renew and differentiate hold great promise in disease modelling and regenerative medicine. However, more information about basic stem cell biology and thorough characterization of available stem cell lines is needed. This is especially essential to ensure safety before any possible clinical use of stem cells or partially committed cell lines. As proteins are the key effector molecules in the cell, the proteomic characterization of cell lines, cell compartments or cell secretome and microenvironment is highly beneficial to answer above mentioned questions. Nowadays, method of choice for large-scale discovery-based proteomic analysis is mass spectrometry (MS) with data-independent acquisition (DIA). DIA is a robust, highly reproducible, high-throughput quantitative MS approach that enables relative quantification of thousands of proteins in one sample. In the current protocol, we describe a specific variant of DIA known as SWATH-MS for characterization of neural stem cell differentiation. The protocol covers the whole process from cell culture, sample preparation for MS analysis, the SWATH-MS data acquisition on TTOF 5600, the complete SWATH-MS data processing and quality control using Skyline software and the basic statistical analysis in R and MSstats package. The protocol for SWATH-MS data acquisition and analysis can be easily adapted to other samples amenable to MS-based proteomics.


Asunto(s)
Células-Madre Neurales , Proteómica , Programas Informáticos , Diferenciación Celular , Humanos , Espectrometría de Masas/métodos , Células-Madre Neurales/química , Células-Madre Neurales/metabolismo , Proteoma/análisis , Proteómica/métodos , Control de Calidad
11.
Vet Sci ; 9(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35622766

RESUMEN

Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.

12.
Proteomics ; 11(4): 691-708, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21241017

RESUMEN

Within a mammalian organism, the interaction among cells both at short and long distances is mediated by soluble factors released by cells into the extracellular environment. The secreted proteins may involve extracellular matrix proteins, proteinases, growth factors, protein hormones, immunoregulatory cytokines, chemokines or other bioactive molecules that have a direct impact on target cell phenotype. Stem cells of mesenchymal, adipose, neural and embryonic origin, fibroblast feeder cells as well as primary isolates of astrocytes, endothelial and muscle cells have recently become targets of intensive secretome profiling with the search for proteins regulating cell survival, proliferation, differentiation or inflammatory response. Recent advances and challenges of the stem cell and primary cell secretome analysis together with the most relevant results are discussed in this review.


Asunto(s)
Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Células Madre/metabolismo , Animales , Biología Celular , Línea Celular , Medios de Cultivo Condicionados , Humanos , Proteínas/análisis , Proteínas/metabolismo
13.
J Proteome Res ; 10(2): 404-15, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21067243

RESUMEN

Resistance to anti-cancer drugs is a well recognized problem and very often it is responsible for failure of the cancer treatment. In this study, the proteome alterations associated with the development of acquired resistance to cyclin-depedent kinases inhibitor bohemine, a promising anti-cancer drug, were analyzed with the primary aim of identifying potential targets of resistance within the cell that could pave a way to selective elimination of specific resistant cell types. A model of parental susceptible CEM T-lymphoblastic leukemia cells and its resistant counterpart CEM-BOH was used and advanced 2-D liquid chromatography was applied to fractionate cellular proteins. Differentially expressed identified proteins were further verified using immunoblotting and immunohistochemistry. Our study has revealed that Rho GDP-dissociation inhibitor 2, Y-box binding protein 1, and the HSP70/90 organizing protein have a critical role to play in resistance to cyclin-depedent kinases inhibitor. The results indicated not only that quantitative protein changes play an important role in drug-resistance, but also that there are various other parameters such as truncation, post-translational modification(s), and subcellular localization of selected proteins. Furthermore, these proteins were validated for their roles in drug resistance using different cell lines resistant to diverse representatives of anti-cancer drugs such as vincristine and daunorubicin.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Biología Computacional , Humanos , Immunoblotting , Modelos Biológicos , Mapeo de Interacción de Proteínas , Proteoma/análisis , Purinas/farmacología , Espectrofotometría Ultravioleta , Fracciones Subcelulares/metabolismo , Proteína 1 de Unión a la Caja Y , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico
14.
Mol Hum Reprod ; 17(11): 679-92, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21697218

RESUMEN

Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic complication and potentially life-threatening condition resulting from excessive ovarian stimulation during assisted reproductive technologies. Our aim was to identify candidate proteins in follicular fluid (FF) using various proteomic approaches which may help to identify patients at risk of OHSS. We analysed the proteome alterations in FF from patients suffering from severe forms of OHSS (OHSS+) compared with a control group of women without or with only mild signs of OHSS (OHSS-). The 12 abundant proteins of FF were removed using an immunoaffinity system. Pools of remaining depleted proteins were applied to the two-dimensional (2D) electrophoresis and 2D liquid chromatography and proteins in differentially expressed protein spots/fractions were identified by mass spectrometry. Among a total of 19 candidate proteins differentially expressed (P< 0.05) between OHSS+ and OHSS- FF samples, three proteins, namely ceruloplasmin, complement C3 and kininogen-1, were found using both 2D techniques. Computer modelling highlighted the important role of kininogen-1 as an anchor for mediated interactions with other identified proteins including ferritin light chain and ceruloplasmin, hepatocyte growth factor-like protein, as well as complement C3 and gelsolin, thus linking various biological processes including inflammation and angiogenesis, iron transport and storage, blood coagulation, innate immunity, cell adhesion and actin filament polymerization. The delineation of such processes may allow the development of informed corrective therapeutic intervention in patients at risk of OHSS and a set of key proteins of the FF may be helpful as potential biomarkers for monitoring IVF therapy.


Asunto(s)
Fertilización In Vitro/efectos adversos , Líquido Folicular/química , Síndrome de Hiperestimulación Ovárica/etiología , Simulación por Computador , Electroforesis en Gel Bidimensional , Femenino , Líquido Folicular/metabolismo , Humanos , Immunoblotting , Quininógenos/química , Quininógenos/metabolismo , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Melanoma Res ; 31(2): 140-151, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625100

RESUMEN

Melanoma-bearing Libechov minipig (MeLiM) represents a large animal model for melanoma research. This model shows a high incidence of complete spontaneous regression of melanoma - a phenomenon uncommon in humans. Here, we present the first metabolomic characterisation of the MeLiM model comparing animals with progressing and spontaneously regressing melanomas. Plasma samples of 19 minipigs with progression and 27 minipigs with evidence of regression were analysed by a targeted metabolomic assay based on mass spectrometry detection. Differences in plasma metabolomics patterns were investigated by univariate and multivariate statistical analyses. Overall, 185 metabolites were quantified in each plasma sample. Significantly altered metabolomic profile was found, and 42 features were differentially regulated in plasma. Besides, the machine learning approach was used to create a predictive model utilising Arg/Orn and Arg/ADMA ratios to discriminate minipigs with progressive disease development from minipigs with regression evidence. Our results suggest that progression of melanoma in the MeLiM model is associated with alteration of arginine, glycerophospholipid and acylcarnitines metabolism. Moreover, this study provides targeted metabolomics characterisation of an animal model of melanoma with progression and spontaneous regression of tumours.


Asunto(s)
Metabolómica/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Porcinos , Porcinos Enanos
16.
Methods Mol Biol ; 2108: 65-88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31939171

RESUMEN

Cytokines, chemokines, and growth factors are key mediators of cell proliferation, migration, and immune response, and in tumor microenvironment, such factors contribute to regulation of tumor growth, immune cell recruitment, angiogenesis, and metastasis. In body fluids, levels of inflammatory mediators reflect the patient immune response to the disease and may predict the effects of targeted therapies. Significant improvements in cytokine detection techniques have been made during last 10 years leading to sensitive quantification of such potent molecules present in low pg/mL levels. Among the techniques, Luminex xMAP® multiplex assays allow for simultaneous quantification of up to 100 analytes with high sensitivity, broad dynamic range of quantification, high throughput, and minimal sample requirements. In this chapter we describe a detailed protocol for the application of xMAP assays using Luminex® 200™ analyzer with xPonent® acquisition software to quantify cytokines, chemokines, and growth factors secreted to blood serum and plasma of cancer patients. We also discuss how sample preparation, instrument settings, and standard curve fitting algorithms can influence validity of obtained results. Special attention is paid to data analysis using open source R statistical environment and we provide an example dataset of cytokine levels measured in serum and corresponding R script for standard curve fitting and concentration estimates.


Asunto(s)
Biomarcadores , Citocinas/sangre , Inmunoensayo/métodos , Mediciones Luminiscentes/métodos , Neoplasias/sangre , Algoritmos , Análisis de Datos , Humanos , Inmunoensayo/normas , Mediciones Luminiscentes/normas , Neoplasias/diagnóstico , Programas Informáticos
17.
Sci Rep ; 10(1): 4290, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152403

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton's jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after H2O2 treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.


Asunto(s)
Tejido Adiposo/citología , Células de la Médula Ósea/citología , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa , Células-Madre Neurales/citología , Gelatina de Wharton/citología , Tejido Adiposo/metabolismo , Células de la Médula Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Células-Madre Neurales/metabolismo , Gelatina de Wharton/metabolismo
18.
Front Cell Neurosci ; 14: 612560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584205

RESUMEN

Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin ß-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.

19.
Nat Med ; 26(1): 118-130, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873312

RESUMEN

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Dependovirus/metabolismo , Silenciador del Gen , Técnicas de Transferencia de Gen , Neuronas Motoras/patología , Degeneración Nerviosa/terapia , Piamadre/patología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Atrofia , Progresión de la Enfermedad , Potenciales Evocados Motores , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Interneuronas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Desarrollo de Músculos , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Piamadre/fisiopatología , Primates , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/administración & dosificación , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiopatología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Porcinos
20.
Genes (Basel) ; 10(11)2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717496

RESUMEN

National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.


Asunto(s)
Melanoma/genética , Neoplasias Cutáneas/genética , Porcinos Enanos/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neoplasias Primarias Secundarias/genética , Porcinos/genética , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA