Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(6): e1011970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885264

RESUMEN

Reactivation from latency plays a significant role in maintaining persistent lifelong Epstein-Barr virus (EBV) infection. Mechanisms governing successful activation and progression of the EBV lytic phase are not fully understood. EBV expresses multiple viral microRNAs (miRNAs) and manipulates several cellular miRNAs to support viral infection. To gain insight into the host miRNAs regulating transitions from EBV latency into the lytic stage, we conducted a CRISPR/Cas9-based screen in EBV+ Burkitt lymphoma (BL) cells using anti-Ig antibodies to crosslink the B cell receptor (BCR) and induce reactivation. Using a gRNA library against >1500 annotated human miRNAs, we identified miR-142 as a key regulator of EBV reactivation. Genetic ablation of miR-142 enhanced levels of immediate early and early lytic gene products in infected BL cells. Ago2-PAR-CLIP experiments with reactivated cells revealed miR-142 targets related to Erk/MAPK signaling, including components directly downstream of the B cell receptor (BCR). Consistent with these findings, disruption of miR-142 enhanced SOS1 levels and Mek phosphorylation in response to surface Ig cross-linking. Effects could be rescued by inhibitors of Mek (cobimetinib) or Raf (dabrafenib). Taken together, these results show that miR-142 functionally regulates SOS1/Ras/Raf/Mek/Erk signaling initiated through the BCR and consequently, restricts EBV entry into the lytic cycle.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , MicroARNs , Activación Viral , Latencia del Virus , Humanos , Herpesvirus Humano 4/genética , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Linfoma de Burkitt/virología , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Línea Celular Tumoral
2.
J Virol ; 96(4): e0149521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878852

RESUMEN

Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved among lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. IMPORTANCE Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.


Asunto(s)
Herpesvirus Humano 4/genética , MicroARNs/genética , Transactivadores/genética , Activación Viral/genética , Regiones no Traducidas 3' , Regulación Viral de la Expresión Génica , Silenciador del Gen , Variación Genética , Células HEK293 , Herpesvirus Humano 4/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Lymphocryptovirus/genética , ARN Mensajero/genética , ARN Viral/genética
3.
PLoS Pathog ; 15(1): e1007535, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615681

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulatory RNAs that can modulate cell signaling and play key roles in cell state transitions. Epstein-Barr virus (EBV) expresses >40 viral miRNAs that manipulate both viral and cellular gene expression patterns and contribute to reprogramming of the host environment during infection. Here, we identified a subset of EBV miRNAs that desensitize cells to B cell receptor (BCR) stimuli, and attenuate the downstream activation of NF-kappaB or AP1-dependent transcription. Bioinformatics and pathway analysis of Ago PAR-CLIP datasets identified multiple EBV miRNA targets related to BCR signal transduction, including GRB2, SOS1, MALT1, RAC1, and INPP5D, which we validated in reporter assays. BCR signaling is critical for B cell activation, proliferation, and differentiation, and for EBV, is linked to reactivation. In functional assays, we demonstrate that EBV miR-BHRF1-2-5p contributes to the growth of latently infected B cells through GRB2 regulation. We further determined that activities of EBV miR-BHRF1-2-5p, EBV miR-BART2-5p, and a cellular miRNA, miR-17-5p, directly regulate virus reactivation triggered by BCR engagement. Our findings provide mechanistic insight into some of the key miRNA interactions impacting the proliferation of latently infected B cells and importantly, governing the latent to lytic switch.


Asunto(s)
Proteína Adaptadora GRB2/metabolismo , Herpesvirus Humano 4/genética , Receptores de Antígenos de Linfocitos B/fisiología , Linfocitos B/virología , Línea Celular , Infecciones por Virus de Epstein-Barr/virología , Proteína Adaptadora GRB2/fisiología , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Herpesvirus Humano 4/inmunología , Humanos , MicroARNs/genética , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Transducción de Señal , Proteínas Virales/metabolismo , Latencia del Virus/genética
4.
J Immunol ; 203(11): 2928-2943, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31653683

RESUMEN

Although IL-15 has been implicated in the pathogenic hyperimmune activation that drives progressive HIV and SIV infection, as well as in the generation of HIV/SIV target cells, it also supports NK and T cell homeostasis and effector activity, potentially benefiting the host. To understand the role of IL-15 in SIV infection and pathogenesis, we treated two cohorts of SIVmac239-infected rhesus macaques (RM; Macaca mulatta), one with chronic infection, the other with primary infection, with a rhesusized, IL-15-neutralizing mAb (versus an IgG isotype control) for up to 10 wk (n = 7-9 RM per group). In both cohorts, anti-IL-15 was highly efficient at blocking IL-15 signaling in vivo, causing 1) profound depletion of NK cells in blood and tissues throughout the treatment period; 2) substantial, albeit transient, depletion of CD8+ effector memory T cells (TEM) (but not the naive and central memory subsets); and 3) CD4+ and CD8+ TEM hyperproliferation. In primary infection, reduced frequencies of SIV-specific effector T cells in an extralymphoid tissue site were also observed. Despite these effects, the kinetics and extent of SIV replication, CD4+ T cell depletion, and the onset of AIDS were comparable between anti-IL-15- and control-treated groups in both cohorts. However, RM treated with anti-IL-15 during primary infection manifested accelerated reactivation of RM rhadinovirus. Thus, IL-15 support of NK cell and TEM homeostasis does not play a demonstrable, nonredundant role in SIV replication or CD4+ T cell deletion dynamics but may contribute to immune control of oncogenic γ-herpesviruses.


Asunto(s)
Interleucina-15/inmunología , Macaca mulatta/inmunología , Transducción de Señal/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Femenino , Masculino , Virus de la Inmunodeficiencia de los Simios/patogenicidad
5.
Curr Top Microbiol Immunol ; 419: 243-280, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28674945

RESUMEN

Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.


Asunto(s)
Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Herpesviridae/genética , Herpesviridae/fisiología , Interacciones Huésped-Patógeno/genética , ARN no Traducido/genética , Herpesviridae/patogenicidad , Humanos , ARN Viral/genética
6.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794034

RESUMEN

Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1ß (IL-1ß). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1ß responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis.IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell.


Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Interleucina-1beta/antagonistas & inhibidores , MicroARNs/genética , Receptores de Interleucina-1/antagonistas & inhibidores , Proteínas Virales/metabolismo , Regiones no Traducidas 3' , Células Cultivadas , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Latencia del Virus
7.
Genes Dev ; 24(22): 2566-82, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21078820

RESUMEN

Cosuppression is a silencing phenomenon triggered by the introduction of homologous DNA sequences into the genomes of organisms as diverse as plants, fungi, flies, and nematodes. Here we report sex-induced silencing (SIS), which is triggered by tandem integration of a transgene array in the human fungal pathogen Cryptococcus neoformans. A SXI2a-URA5 transgene array was found to be post-transcriptionally silenced during sexual reproduction. More than half of the progeny that inherited the SXI2a-URA5 transgene became uracil-auxotrophic due to silencing of the URA5 gene. In vegetative mitotic growth, silencing of this transgene array occurred at an ∼250-fold lower frequency, indicating that silencing is induced during the sexual cycle. Central components of the RNAi pathway-including genes encoding Argonaute, Dicer, and an RNA-dependent RNA polymerase-are all required for both meiotic and mitotic transgene silencing. URA5-derived ∼22-nucleotide (nt) small RNAs accumulated in the silenced isolates, suggesting that SIS is mediated by RNAi via sequence-specific small RNAs. Through deep sequencing of the small RNA population in C. neoformans, we also identified abundant small RNAs mapping to repetitive transposable elements, and these small RNAs were absent in rdp1 mutant strains. Furthermore, a group of retrotransposons was highly expressed during mating of rdp1 mutant strains, and an increased transposition/mutation rate was detected in their progeny, indicating that the RNAi pathway squelches transposon activity during the sexual cycle. Interestingly, Ago1, Dcr1, Dcr2, and Rdp1 are translationally induced in mating cells, and Ago1, Dcr1, and Dcr2 localize to processing bodies (P bodies), whereas Rdp1 appears to be nuclear, providing mechanistic insights into the elevated silencing efficiency during sexual reproduction. We hypothesize that the SIS RNAi pathway operates to defend the genome during sexual development.


Asunto(s)
Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Genoma Fúngico/genética , Interferencia de ARN , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Alelos , Genes Fúngicos/genética , Reproducción/genética , Retroelementos/genética , Factores Sexuales
8.
EMBO J ; 32(17): 2377-91, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23921550

RESUMEN

MicroRNAs (miRNAs) have been broadly implicated in cancer, but their exact function and mechanism in carcinogenesis remain poorly understood. Elevated miR-17~92 expression is frequently found in human cancers, mainly due to gene amplification and Myc-mediated transcriptional upregulation. Here we show that B cell-specific miR-17~92 transgenic mice developed lymphomas with high penetrance and that, conversely, Myc-driven lymphomagenesis stringently requires two intact alleles of miR-17~92. We experimentally identified miR-17~92 target genes by PAR-CLIP and validated select target genes in miR-17~92 transgenic mice. These analyses demonstrate that miR-17~92 drives lymphomagenesis by suppressing the expression of multiple negative regulators of the PI3K and NFκB pathways and by inhibiting the mitochondrial apoptosis pathway. Accordingly, miR-17~92-driven lymphoma cells exhibited constitutive activation of the PI3K and NFκB pathways and chemical inhibition of either pathway reduced tumour size and prolonged the survival of lymphoma-bearing mice. These findings establish miR-17~92 as a powerful cancer driver that coordinates the activation of multiple oncogenic pathways, and demonstrate for the first time that chemical inhibition of miRNA downstream pathways has therapeutic value in treating cancers caused by miRNA dysregulation.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma/genética , MicroARNs/fisiología , Animales , Linfocitos B/patología , Linfocitos B/fisiología , Linfoma de Burkitt/genética , Linfoma de Burkitt/patología , Proliferación Celular , Supervivencia Celular/genética , Proteínas de Homeodominio/genética , Humanos , Imidazoles/farmacología , Linfoma/metabolismo , Linfoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinas/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/administración & dosificación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Quinoxalinas/farmacología , ARN Largo no Codificante , Reproducibilidad de los Resultados
9.
J Virol ; 90(20): 9350-63, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27512057

RESUMEN

UNLABELLED: Japanese macaque (JM) rhadinovirus (JMRV) is a novel, gamma-2 herpesvirus that was recently isolated from JM with inflammatory demyelinating encephalomyelitis (JME). JME is a spontaneous and chronic disease with clinical characteristics and immunohistopathology comparable to those of multiple sclerosis in humans. Little is known about the molecular biology of JMRV. Here, we sought to identify and characterize the small RNAs expressed during lytic JMRV infection using deep sequencing. Fifteen novel viral microRNAs (miRNAs) were identified in JMRV-infected fibroblasts, all of which were readily detectable by 24 h postinfection and accumulated to high levels by 72 h. Sequence comparisons to human Kaposi's sarcoma-associated herpesvirus (KSHV) miRNAs revealed several viral miRNA homologs. To functionally characterize JMRV miRNAs, we screened for their effects on nuclear factor kappa B (NF-κB) signaling in the presence of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß). Multiple JMRV miRNAs suppressed cytokine-induced NF-κB activation. One of these miRNAs, miR-J8, has seed sequence homology to members of the cellular miR-17/20/106 and miR-373 families, which are key players in cell cycle regulation as well as inflammation. Using reporters, we show that miR-J8 can target 3' untranslated regions (UTRs) with miR-17-5p or miR-20a cognate sites. Our studies implicate JMRV miRNAs in the suppression of innate antiviral immune responses, which is an emerging feature of many viral miRNAs. IMPORTANCE: Gammaherpesviruses are associated with multiple diseases linked to immunosuppression and inflammation, including AIDS-related cancers and autoimmune diseases. JMRV is a recently identified herpesvirus that has been linked to JME, an inflammatory demyelinating disease in Japanese macaques that mimics multiple sclerosis. There are few large-animal models for gammaherpesvirus-associated pathogenesis. Here, we provide the first experimental evidence of JMRV miRNAs in vitro and demonstrate that one of these viral miRNAs can mimic the activity of the cellular miR-17/20/106 family. Our work provides unique insight into the roles of viral miRNAs during rhadinovirus infection and provides an important step toward understanding viral miRNA function in a nonhuman primate model system.


Asunto(s)
Macaca/virología , MicroARNs/genética , ARN Viral/genética , Rhadinovirus/genética , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Línea Celular , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/virología , Encefalomielitis/genética , Encefalomielitis/virología , Perfilación de la Expresión Génica/métodos , Células HEK293 , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interleucina-1beta/genética , Japón , FN-kappa B/genética , Homología de Secuencia , Factor de Necrosis Tumoral alfa/genética
10.
PLoS Pathog ; 11(6): e1004979, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26070070

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that can give rise to cancers of both B-cell and epithelial cell origin. In EBV-induced cancers of epithelial origin, including nasopharyngeal carcinomas (NPCs) and gastric carcinomas, the latent EBV genome expresses very high levels of a cluster of 22 viral pre-miRNAs, called the miR-BARTs, and these have previously been shown to confer a degree of resistance to pro-apoptotic drugs. Here, we present an analysis of the ability of individual miR-BART pre-miRNAs to confer an anti-apoptotic phenotype and report that five of the 22 miR-BARTs demonstrate this ability. We next used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to globally identify the mRNA targets bound by these miR-BARTs in latently infected epithelial cells. This led to the identification of ten mRNAs encoding pro-apoptotic mRNA targets, all of which could be confirmed as valid targets for the five anti-apoptotic miR-BARTs by indicator assays and by demonstrating that ectopic expression of physiological levels of the relevant miR-BART in the epithelial cell line AGS resulted in a significant repression of the target mRNA as well as the encoded protein product. Using RNA interference, we further demonstrated that knockdown of at least seven of these cellular miR-BART target transcripts phenocopies the anti-apoptotic activity seen upon expression of the relevant EBV miR-BART miRNA. Together, these observations validate previously published reports arguing that the miR-BARTs can exert an anti-apoptotic effect in EBV-infected epithelial cells and provide a mechanistic explanation for this activity. Moreover, these results identify and validate a substantial number of novel mRNA targets for the anti-apoptotic miR-BARTs.


Asunto(s)
Infecciones por Virus de Epstein-Barr/genética , Evasión Inmune/genética , MicroARNs/genética , ARN Viral/genética , Latencia del Virus/genética , Apoptosis/genética , Western Blotting , Línea Celular , Resistencia a Medicamentos/genética , Herpesvirus Humano 4/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Análisis de Secuencia de ARN , Transfección
11.
Nat Methods ; 10(7): 630-3, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23708386

RESUMEN

High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute proteins can pinpoint a microRNA (miRNA) target site within tens of bases but leaves the identity of the miRNA unresolved. A flexible computational framework, microMUMMIE, integrates sequence with cross-linking features and reliably identifies the miRNA family involved in each binding event. It considerably outperforms sequence-only approaches and quantifies the prevalence of noncanonical binding modes.


Asunto(s)
Algoritmos , Mapeo de Interacción de Proteínas/métodos , Proteínas de Unión al ARN/genética , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Integración de Sistemas
12.
J Virol ; 89(22): 11711-4, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26339045

RESUMEN

Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system.


Asunto(s)
Herpesvirus Humano 4/genética , ARN Viral/genética , Proteínas de la Matriz Viral/metabolismo , Animales , Línea Celular , Cisplatino/farmacología , Humanos , Ratones , Ratones Noqueados , Ratones SCID , MicroARNs/genética , ARN Viral/biosíntesis , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de la Matriz Viral/genética
13.
Curr Top Microbiol Immunol ; 391: 181-217, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26428375

RESUMEN

EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/metabolismo , ARN no Traducido/metabolismo , ARN Viral/metabolismo , Animales , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Humanos , ARN no Traducido/química , ARN no Traducido/genética , ARN Viral/química , ARN Viral/genética
14.
Nucleic Acids Res ; 42(7): 4629-39, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464996

RESUMEN

It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function.


Asunto(s)
MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas Argonautas/metabolismo , Línea Celular , Humanos , ARN Mensajero/metabolismo
15.
J Virol ; 88(3): 1617-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24257599

RESUMEN

Epstein-Barr virus (EBV) and rhesus lymphocryptovirus (rLCV) are closely related gammaherpesviruses in the lymphocryptovirus subgroup that express viral microRNAs (miRNAs) during latent infection. In addition to many host mRNAs, EBV miRNAs are known to target latent viral transcripts, specifically those encoding LMP1, BHRF1, and EBNA2. The mRNA targets of rLCV miRNAs have not been investigated. Using luciferase reporter assays, photoactivatable cross-linking and immunoprecipitation (PAR-CLIP), and deep sequencing, we demonstrate that posttranscriptional regulation of LMP1 expression is a conserved function of lymphocryptovirus miRNAs. Furthermore, the mRNAs encoding the rLCV EBNA2 and BHRF1 homologs are regulated by miRNAs in rLCV-infected B cells. Homologous to sites in the EBV LMP1 and BHRF1 3'-untranslated regions (UTRs), we also identified evolutionarily conserved binding sites for the cellular miR-17/20/106 family in the LMP1 and BHRF1 3'UTRs of several primate LCVs. Finally, we investigated the functional consequences of LMP1 targeting by individual EBV BART miRNAs and show that select viral miRNAs play a role in the previously observed modulation of NF-κB activation.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Evolución Molecular , Regulación Viral de la Expresión Génica , Lymphocryptovirus/genética , MicroARNs/genética , Enfermedades de los Primates/virología , ARN Viral/genética , Proteínas Virales/genética , Animales , Secuencia de Bases , Herpesvirus Humano 4/química , Herpesvirus Humano 4/clasificación , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Lymphocryptovirus/química , Lymphocryptovirus/clasificación , Lymphocryptovirus/metabolismo , Macaca mulatta , MicroARNs/química , MicroARNs/metabolismo , Datos de Secuencia Molecular , Primates , ARN Viral/química , ARN Viral/metabolismo , Alineación de Secuencia , Proteínas Virales/metabolismo
16.
J Virol ; 88(14): 8065-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807715

RESUMEN

The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , MicroARNs/genética , MicroARNs/inmunología , Replicación Viral , Virus/genética , Virus/inmunología , Animales , Línea Celular , Silenciador del Gen , Humanos , Virus/crecimiento & desarrollo
17.
Annu Rev Microbiol ; 64: 123-41, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20477536

RESUMEN

One of the most significant recent advances in biomedical research has been the discovery of the approximately 22-nt-long class of noncoding RNAs designated microRNAs (miRNAs). These regulatory RNAs provide a unique level of posttranscriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, especially herpesviruses, also encode miRNAs, and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to viral infection.


Asunto(s)
Silenciador del Gen , Interacciones Huésped-Patógeno , MicroARNs/genética , MicroARNs/metabolismo , Virus/patogenicidad , Regulación de la Expresión Génica , Modelos Biológicos , ARN Viral/genética , ARN Viral/metabolismo
18.
PLoS Pathog ; 8(1): e1002484, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22291592

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3'UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3'UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies.


Asunto(s)
Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Trastornos Linfoproliferativos/metabolismo , Trastornos Linfoproliferativos/virología , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Humanos , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , MicroARNs/genética , Latencia del Virus/genética
20.
Curr Opin Virol ; 56: 101272, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36242893

RESUMEN

Herpesviruses, such as Epstein-Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets in vitro, our understanding of their contributions to pathogenesis in vivo, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.


Asunto(s)
Infecciones por Virus de Epstein-Barr , MicroARNs , Humanos , MicroARNs/genética , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/genética , Carcinogénesis , Diferenciación Celular , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA