Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 299(8): 104972, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380082

RESUMEN

Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.


Asunto(s)
Proteínas Bacterianas , Borrelia , Proteínas Inactivadoras del Complemento 1 , Enfermedad de Lyme , Fiebre Recurrente , Humanos , Proteínas Bacterianas/química , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Fiebre Recurrente/inmunología , Fiebre Recurrente/microbiología , Proteínas Inactivadoras del Complemento 1/química , Dominios Proteicos , Cristalografía por Rayos X
2.
J Immunol ; 207(11): 2856-2867, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34759015

RESUMEN

Complement evasion is a hallmark of extracellular microbial pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. Lyme disease spirochetes express nearly a dozen outer surface lipoproteins that bind complement components and interfere with their native activities. Among these, BBK32 is unique in its selective inhibition of the classical pathway. BBK32 blocks activation of this pathway by selectively binding and inhibiting the C1r serine protease of the first component of complement, C1. To understand the structural basis for BBK32-mediated C1r inhibition, we performed crystallography and size-exclusion chromatography-coupled small angle X-ray scattering experiments, which revealed a molecular model of BBK32-C in complex with activated human C1r. Structure-guided site-directed mutagenesis was combined with surface plasmon resonance binding experiments and assays of complement function to validate the predicted molecular interface. Analysis of the structures shows that BBK32 inhibits activated forms of C1r by occluding substrate interaction subsites (i.e., S1 and S1') and reveals a surprising role for C1r B loop-interacting residues for full inhibitory activity of BBK32. The studies reported in this article provide for the first time (to our knowledge) a structural basis for classical pathway-specific inhibition by a human pathogen.


Asunto(s)
Proteínas Bacterianas/inmunología , Borrelia burgdorferi/química , Complemento C1r/inmunología , Enfermedad de Lyme/inmunología , Péptido Hidrolasas/inmunología , Proteínas Bacterianas/química , Borrelia burgdorferi/inmunología , Humanos , Modelos Moleculares
3.
PLoS Pathog ; 16(5): e1008423, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32365143

RESUMEN

Post-transcriptional regulation via small regulatory RNAs (sRNAs) has been implicated in diverse regulatory processes in bacteria, including virulence. One class of sRNAs, termed trans-acting sRNAs, can affect the stability and/or the translational efficiency of regulated transcripts. In this study, we utilized a collaborative approach that employed data from infection with the Borrelia burgdorferi Tn library, coupled with Tn-seq, together with borrelial sRNA and total RNA transcriptomes, to identify an intergenic trans-acting sRNA, which we designate here as ittA for infectivity-associated and tissue-tropic sRNA locus A. The genetic inactivation of ittA resulted in a significant attenuation in infectivity, with decreased spirochetal load in ear, heart, skin and joint tissues. In addition, the ittA mutant did not disseminate to peripheral skin sites or heart tissue, suggesting a role for ittA in regulating a tissue-tropic response. RNA-Seq analysis determined that 19 transcripts were differentially expressed in the ittA mutant relative to its genetic parent, including vraA, bba66, ospD and oms28 (bba74). Subsequent proteomic analyses also showed a significant decrease of OspD and Oms28 (BBA74) proteins. To our knowledge this is the first documented intergenic sRNA that alters the infectivity potential of B. burgdorferi.


Asunto(s)
Borrelia burgdorferi/genética , ARN Pequeño no Traducido/metabolismo , Tropismo/genética , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidad , Regulación Bacteriana de la Expresión Génica/genética , Biblioteca de Genes , Genoma Bacteriano , Enfermedad de Lyme/microbiología , Proteómica , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Transcriptoma/genética , Virulencia
4.
Curr Issues Mol Biol ; 42: 385-408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33310914

RESUMEN

Being able to vizualize a pathogen at a site of interaction with a host is an aesthetically appealing idea and the resulting images can be both informative as well as enjoyable to view. Moreover, the approaches used to derive these images can be powerful in terms of offering data unobtainable by other methods. In this article, we review three primary modalities for live imaging Borrelia spirochetes: whole animal imaging, intravital microscopy and live cell imaging. Each method has strengths and weaknesses, which we review, as well as specific purposes for which they are optimally utilized. Live imaging borriliae is a relatively recent development and there was a need of a review to cover the area. Here, in addition to the methods themselves, we also review areas of spirochete biology that have been significantly impacted by live imaging and present a collection of images associated with the forward motion in the field driven by imaging studies.


Asunto(s)
Borrelia/citología , Microscopía , Animales , Fenómenos Fisiológicos Bacterianos , Borrelia/fisiología , Humanos , Microscopía/métodos , Imagen Óptica/métodos
5.
Curr Issues Mol Biol ; 42: 473-518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33353871

RESUMEN

Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.


Asunto(s)
Borrelia , Susceptibilidad a Enfermedades , Enfermedad de Lyme/microbiología , Animales , Vectores Artrópodos/microbiología , Borrelia/genética , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Enfermedad de Lyme/transmisión , Garrapatas/microbiología , Virulencia , Factores de Virulencia/genética
6.
PLoS Pathog ; 15(3): e1007659, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30897158

RESUMEN

The carboxy-terminal domain of the BBK32 protein from Borrelia burgdorferi sensu stricto, termed BBK32-C, binds and inhibits the initiating serine protease of the human classical complement pathway, C1r. In this study we investigated the function of BBK32 orthologues of the Lyme-associated Borrelia burgdorferi sensu lato complex, designated BAD16 from B. afzelii strain PGau and BGD19 from B. garinii strain IP90. Our data show that B. afzelii BAD16-C exhibits BBK32-C-like activities in all assays tested, including high-affinity binding to purified C1r protease and C1 complex, and potent inhibition of the classical complement pathway. Recombinant B. garinii BGD19-C also bound C1 and C1r with high-affinity yet exhibited significantly reduced in vitro complement inhibitory activities relative to BBK32-C or BAD16-C. Interestingly, natively produced BGD19 weakly recognized C1r relative to BBK32 and BAD16 and, unlike these proteins, BGD19 did not confer significant protection from serum killing. Site-directed mutagenesis was performed to convert BBK32-C to resemble BGD19-C at three residue positions that are identical between BBK32 and BAD16 but different in BGD19. The resulting chimeric protein was designated BXK32-C and this BBK32-C variant mimicked the properties observed for BGD19-C. To query the disparate complement inhibitory activities of BBK32 orthologues, the crystal structure of BBK32-C was solved to 1.7Å limiting resolution. BBK32-C adopts an anti-parallel four-helix bundle fold with a fifth alpha-helix protruding from the helical core. The structure revealed that the three residues targeted in the BXK32-C chimera are surface-exposed, further supporting their potential relevance in C1r binding and inhibition. Additional binding assays showed that BBK32-C only recognized C1r fragments containing the serine protease domain. The structure-function studies reported here improve our understanding of how BBK32 recognizes and inhibits C1r and provide new insight into complement evasion mechanisms of Lyme-associated spirochetes of the B. burgdorferi sensu lato complex.


Asunto(s)
Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Vía Clásica del Complemento/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/ultraestructura , Borrelia burgdorferi/inmunología , Grupo Borrelia Burgdorferi , Complemento C1r/metabolismo , Vía Clásica del Complemento/fisiología , Proteínas del Sistema Complemento/metabolismo , Humanos , Enfermedad de Lyme/fisiopatología , Dominios Proteicos/fisiología , Proteínas Recombinantes , Análisis de Secuencia de Proteína
7.
PLoS Pathog ; 15(5): e1007644, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086414

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease in humans, is maintained in a complex biphasic life cycle, which alternates between tick and vertebrate hosts. To successfully survive and complete its enzootic cycle, B. burgdorferi adapts to diverse hosts by regulating genes required for survival in specific environments. Here we describe the first ever use of transposon insertion sequencing (Tn-seq) to identify genes required for B. burgdorferi survival in its tick host. We found that insertions into 46 genes resulted in a complete loss of recovery of mutants from larval Ixodes ticks. Insertions in an additional 56 genes resulted in a >90% decrease in fitness. The screen identified both previously known and new genes important for larval tick survival. Almost half of the genes required for survival in the tick encode proteins of unknown function, while a significant portion (over 20%) encode membrane-associated proteins or lipoproteins. We validated the results of the screen for five Tn mutants by performing individual competition assays using mutant and complemented strains. To better understand the role of one of these genes in tick survival, we conducted mechanistic studies of bb0017, a gene previously shown to be required for resistance against oxidative stress. In this study we show that BB0017 affects the regulation of key borrelial virulence determinants. The application of Tn-seq to in vivo screening of B. burgdorferi in its natural vector is a powerful tool that can be used to address many different aspects of the host pathogen interaction.


Asunto(s)
Proteínas Bacterianas/genética , Borrelia burgdorferi/crecimiento & desarrollo , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme/microbiología , Garrapatas/crecimiento & desarrollo , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Modelos Animales de Enfermedad , Vectores de Enfermedades , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Enfermedad de Lyme/inmunología , Ratones , Garrapatas/microbiología , Factores de Virulencia/metabolismo
8.
PLoS Pathog ; 13(2): e1006225, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28212410

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease in humans, is exposed to reactive oxygen and nitrogen species (ROS and RNS) in both the tick vector and vertebrate reservoir hosts. B. burgdorferi contains a limited repertoire of canonical oxidative stress response genes, suggesting that novel gene functions may be important for protection of B. burgdorferi against ROS or RNS exposure. Here, we use transposon insertion sequencing (Tn-seq) to conduct an unbiased search for genes involved in resistance to nitric oxide, hydrogen peroxide, and tertiary-butyl hydroperoxide in vitro. The screens identified 66 genes whose disruption resulted in increased susceptibility to at least one of the stressors. These genes include previously characterized mediators of ROS and RNS resistance (including components of the nucleotide excision repair pathway and a subunit of a riboflavin transporter), as well as novel putative resistance candidates. DNA repair mutants were among the most sensitive to RNS in the Tn-seq screen, and survival assays with individual Tn mutants confirmed that the putative ribonuclease BB0839 is involved in resistance to nitric oxide. In contrast, mutants lacking predicted inner membrane proteins or transporters were among the most sensitive to ROS, and the contribution of three such membrane proteins (BB0017, BB0164, and BB0202) to ROS sensitivity was confirmed using individual Tn mutants and complemented strains. Further analysis showed that levels of intracellular manganese are significantly reduced in the Tn::bb0164 mutant, identifying a novel role for BB0164 in B. burgdorferi manganese homeostasis. Infection of C57BL/6 and gp91phox-/- mice with a mini-library of 39 Tn mutants showed that many of the genes identified in the in vitro screens are required for infectivity in mice. Collectively, our data provide insight into how B. burgdorferi responds to ROS and RNS and suggests that this response is relevant to the in vivo success of the organism.


Asunto(s)
Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Genes Bacterianos/inmunología , Enfermedad de Lyme/microbiología , Animales , Modelos Animales de Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Lyme/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
PLoS Pathog ; 12(1): e1005404, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26808924

RESUMEN

Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.


Asunto(s)
Proteínas Bacterianas/inmunología , Borrelia burgdorferi/inmunología , Activación de Complemento/inmunología , Vía Clásica del Complemento/inmunología , Interacciones Huésped-Parásitos/inmunología , Evasión Inmune/inmunología , Complemento C1/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Inmunoprecipitación , Enfermedad de Lyme/inmunología
10.
Mol Microbiol ; 96(1): 68-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25560615

RESUMEN

Borrelia burgdorferi, the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidad , Colágeno/metabolismo , Regulación Bacteriana de la Expresión Génica , Lipoproteínas/metabolismo , Adhesinas Bacterianas/metabolismo , Animales , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Humanos , Lipoproteínas/genética , Ratones , Ratones Endogámicos C3H , Unión Proteica
11.
Infect Immun ; 83(9): 3693-703, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150534

RESUMEN

Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1ß1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Borrelia burgdorferi/patogenicidad , Enfermedad de Lyme/microbiología , Animales , Borrelia burgdorferi/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Immunoblotting , Mediciones Luminiscentes , Enfermedad de Lyme/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Mol Microbiol ; 83(2): 319-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22151008

RESUMEN

The etiological agent of Lyme disease, Borrelia burgdorferi, is transmitted by ticks of the Ixodes genus and, if untreated, can cause significant morbidity in affected individuals. Recent reports have shown that polyunsaturated fatty acids in the B. burgdorferi cell envelope are potential targets for oxidative damage, which can be lethal. How B. burgdorferi responds to this assault is not known. Herein we report evidence that bb0646 codes for a lipase that is located within the bosR operon and that has specificity for both saturated and polyunsaturated fatty acids. Specifically, strains harbouring mutated copies of the lipase, either in the form of an insertionally inactivated construct or site-directed mutations within the active site, demonstrated attenuated lipolytic and haemolytic phenotypes when compared with the isogenic parent and trans-complements. In vivo analysis showed that while the bb0646 mutant remains infectious, the spirochaetal load is significantly lower than both the isogenic parent and the complemented mutant strains. Taken together, these data demonstrate that BB0646 is a broad substrate specific lipase that contributes to lipolytic and haemolytic activity in vitro and is required for optimal B. burgdorferi infection.


Asunto(s)
Borrelia burgdorferi/enzimología , Proteínas Hemolisinas/metabolismo , Lipasa/metabolismo , Estructuras Animales/microbiología , Animales , Carga Bacteriana , Borrelia burgdorferi/genética , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Proteínas Hemolisinas/genética , Lipasa/genética , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Ratones , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Mutación Missense , Operón
13.
Mol Microbiol ; 86(5): 1116-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23095033

RESUMEN

Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochaete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real-time microscopic imaging of the Lyme spirochaete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32-dependent vascular adhesion in vivo. We determined that BBK32-Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32-GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32-like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/fisiología , Endotelio Vascular/metabolismo , Fibronectinas/metabolismo , Glicosaminoglicanos/metabolismo , Interacciones Huésped-Patógeno , Animales , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Endotelio Vascular/microbiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/fisiopatología , Ratones , Unión Proteica
14.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909632

RESUMEN

Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r. Borrelia miyamotoi spirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain of B. hermsii FbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.

15.
Mol Microbiol ; 82(1): 99-113, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854463

RESUMEN

The aetiological agent of Lyme disease, Borrelia burgdorferi, is transmitted via infected Ixodes spp. ticks. Infection, if untreated, results in dissemination to multiple tissues and significant morbidity. Recent developments in bioluminescence technology allow in vivo imaging and quantification of pathogenic organisms during infection. Herein, luciferase-expressing B. burgdorferi and strains lacking the decorin adhesins DbpA and DbpB, as well as the fibronectin adhesin BBK32, were quantified by bioluminescent imaging to further evaluate their pathogenic potential in infected mice. Quantification of bacterial load was verified by quantitative PCR (qPCR) and cultivation. B. burgdorferi lacking DbpA and DbpB were only seen at the 1 h time point post infection, consistent with its low infectivity phenotype. The bbk32 mutant exhibited a significant decrease in its infectious load at day 7 relative to its parent. This effect was most pronounced at lower inocula and imaging correlated well with qPCR data. These data suggest that BBK32-mediated binding plays an important role in B. burgdorferi colonization. As such, in vivo imaging of bioluminescent Borrelia provides a sensitive means to detect, quantify and temporally characterize borrelial dissemination in a non-invasive, physiologically relevant environment and, more importantly, demonstrated a quantifiable infectivity defect for the bbk32 mutant.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/química , Borrelia burgdorferi/metabolismo , Fibronectinas/metabolismo , Mediciones Luminiscentes/métodos , Enfermedad de Lyme/microbiología , Imagen Molecular/métodos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Femenino , Humanos , Luciferasas/química , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Unión Proteica
16.
Front Immunol ; 13: 886733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693799

RESUMEN

Pathogens that traffic in the blood of their hosts must employ mechanisms to evade the host innate immune system, including the complement cascade. The Lyme disease spirochete, Borreliella burgdorferi, has evolved numerous outer membrane lipoproteins that interact directly with host proteins. Compared to Lyme disease-associated spirochetes, relatively little is known about how an emerging tick-borne spirochetal pathogen, Borrelia miyamotoi, utilizes surface lipoproteins to interact with a human host. B. burgdorferi expresses the multifunctional lipoprotein, BBK32, that inhibits the classical pathway of complement through interaction with the initiating protease C1r, and also interacts with fibronectin using a separate intrinsically disordered domain. B. miyamotoi encodes two separate bbk32 orthologs denoted fbpA and fbpB; however, the activities of these proteins are unknown. Here, we show that B. miyamotoi FbpA binds human fibronectin in a manner similar to B. burgdorferi BBK32, whereas FbpB does not. FbpA and FbpB both bind human complement C1r and protect a serum-sensitive B. burgdorferi strain from complement-mediated killing, but surprisingly, differ in their ability to recognize activated C1r versus zymogen states of C1r. To better understand the observed differences in C1r recognition and inhibition properties, high-resolution X-ray crystallography structures were solved of the C1r-binding regions of B. miyamotoi FbpA and FbpB at 1.9Å and 2.1Å, respectively. Collectively, these data suggest that FbpA and FbpB have partially overlapping functions but are functionally and structurally distinct. The data presented herein enhances our overall understanding of how bloodborne pathogens interact with fibronectin and modulate the complement system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Borrelia/fisiología , Proteínas del Sistema Complemento/metabolismo , Fibronectinas , Humanos , Lipoproteínas
17.
J Thromb Haemost ; 20(11): 2656-2665, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35996342

RESUMEN

BACKGROUND: Anti-platelet factor 4 (PF4)/heparin immune complexes that cause heparin-induced thrombocytopenia (HIT) activate complement via the classical pathway. Previous studies have shown that the alternative pathway of complement substantially amplifies the classical pathway of complement activation through the C3b feedback cycle. OBJECTIVES: These studies sought to examine the contributions of the alternative pathway to complement activation by HIT antibodies. METHODS: Using IgG monoclonal (KKO) and/or patient-derived HIT antibodies, we compared the effects of classical pathway (BBK32 and C1-esterase inhibitor [C1-INH]), alternative pathway (anti-factor B [fB] or factor D [fD] inhibitor) or combined classical and alternative pathway inhibition (soluble complement receptor 1 [sCR1]) in whole blood or plasma. RESULTS: Classical pathway inhibitors BBK32 and C1-INH and the combined classical/alternative pathway inhibitor sCR1 prevented KKO/HIT immune complex-induced complement activation, including release of C3 and C5 activation products, binding of immune complexes to B cells, and neutrophil activation. The alternative pathway inhibitors fB and fD, however, did not affect complement activation by KKO/HIT immune complexes. Similarly, alternative pathway inhibition had no effect on complement activation by unrelated immune complexes consisting of anti-dinitrophenyl (DNP) antibody and the multivalent DNP--keyhole limpet hemocyanin antigen. CONCLUSIONS: Collectively, these findings suggest the alternative pathway contributes little in support of complement activation by HIT immune complexes. Additional in vitro and in vivo studies are required to examine if this property is shared by most IgG-containing immune complexes or if predominance of the classic pathway is limited to immune complexes composed of multivalent antigens.


Asunto(s)
Complejo Antígeno-Anticuerpo , Trombocitopenia , Humanos , Factor D del Complemento , Heparina/efectos adversos , Activación de Complemento , Proteínas del Sistema Complemento , Inmunoglobulina G , Receptores de Complemento , Esterasas/efectos adversos
18.
Infect Immun ; 79(3): 1338-48, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21173306

RESUMEN

Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most widespread tick-borne infection in the northern hemisphere that results in a multistage disorder with concomitant pathology, including arthritis. During late-stage experimental infection in mice, B. burgdorferi evades the adaptive immune response despite the presence of borrelia-specific bactericidal antibodies. In this study we asked whether B. burgdorferi could invade fibroblasts or endothelial cells as a mechanism to model the avoidance from humorally based clearance. A variation of the gentamicin protection assay, coupled with the detection of borrelial transcripts following gentamicin treatment, indicated that a portion of B. burgdorferi cells were protected in the short term from antibiotic killing due to their ability to invade cultured mammalian cells. Long-term coculture of B. burgdorferi with primary human fibroblasts provided additional support for intracellular protection. Furthermore, decreased invasion of B. burgdorferi in murine fibroblasts that do not synthesize the ß(1) integrin subunit was observed, indicating that ß(1)-containing integrins are required for optimal borrelial invasion. However, ß(1)-dependent invasion did not require either the α(5)ß(1) integrin or the borrelial fibronectin-binding protein BBK32. The internalization of B. burgdorferi was inhibited by cytochalasin D and PP2, suggesting that B. burgdorferi invasion required the reorganization of actin filaments and Src family kinases (SFK), respectively. Taken together, these results suggest that B. burgdorferi can invade and retain viability in nonphagocytic cells in a process that may, in part, help to explain the phenotype observed in untreated experimental infection.


Asunto(s)
Borrelia burgdorferi/patogenicidad , Fibroblastos/microbiología , Cadenas beta de Integrinas/metabolismo , Enfermedad de Lyme/metabolismo , Familia-src Quinasas/metabolismo , Animales , Adhesión Bacteriana , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Línea Celular , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Ratones , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Infect Immun ; 78(1): 265-74, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19858309

RESUMEN

Borrelia burgdorferi, the etiological agent of Lyme disease, adapts to unique host environments as a consequence of its complex life cycle that spans both arthropod and mammalian species. In this regard, B. burgdorferi must adapt to various environmental signals, pHs, temperatures, and O(2) and CO(2) levels to establish infectious foci. We hypothesize that the BosR protein functions as a global regulator that is required for both borrelial oxidative homeostasis and pathogenesis. To assess the role of BosR in B. burgdorferi, we constructed an IPTG (isopropyl-beta-d-thiogalactopyranoside)-regulated bosR strain. The selective decrease of bosR resulted in a change in growth when cells were cultured either anaerobically or microaerobically; however, a distinct growth defect was observed for anaerobically grown B. burgdorferi relative to the growth attenuation observed for microaerobically grown B. burgdorferi. B. burgdorferi cells in which BosR levels were reduced were more sensitive to hydrogen peroxide and produced lower levels of NapA (Dps) and SodA, proteins involved in the oxidative stress response. In addition, the levels of OspC and DbpA were also induced coincident with increased BosR levels, suggesting that BosR interfaces with the RpoS regulatory cascade, which is known to modulate virulence gene expression in B. burgdorferi. Taken together, these results indicate that BosR is involved in the resistance of B. burgdorferi to oxidative stressors and affects the expression of genes, either directly or indirectly, whose products are important in borrelial pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas Bacterianas/genética , Borrelia burgdorferi/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Peróxido de Hidrógeno/farmacología , Mutación , Estrés Oxidativo
20.
Mol Microbiol ; 74(6): 1344-55, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19906179

RESUMEN

Summary Borrelia burgdorferi, the Lyme disease spirochete, adapts as it moves between the arthropod and mammalian hosts that it infects. We hypothesize that BosR serves as a global regulator in B. burgdorferi to modulate the oxidative stress response and adapt to mammalian hosts. To test this hypothesis, a bosR mutant in a low-passage B. burgdorferi isolate was constructed. The resulting bosR::kan(R) strain was altered when grown microaerobically or anaerobically suggesting that BosR is required for optimal replication under both growth conditions. The absence of BosR increased the sensitivity of B. burgdorferi to hydrogen peroxide and reduced the synthesis of Cdr and NapA, proteins important for cellular redox balance and the oxidative stress response, respectively, suggesting an important role for BosR in borrelial oxidative homeostasis. For the bosR mutant, the production of RpoS was abrogated and resulted in the loss of OspC and DbpA, suggesting that BosR interfaces with the Rrp2-RpoN-RpoS regulatory cascade. Consistent with the linkage to RpoS, cells lacking bosR were non-infectious in the mouse model of infection. These results indicate that BosR is required for resistance to oxidative stressors and provides a regulatory response that is necessary for B. burgdorferi pathogenesis.


Asunto(s)
Proteínas Bacterianas/fisiología , Borrelia burgdorferi/fisiología , Proteínas de Unión al ADN/fisiología , Regulación Bacteriana de la Expresión Génica , Factor sigma/biosíntesis , Estrés Fisiológico , Factores de Virulencia/biosíntesis , Estructuras Animales/microbiología , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Borrelia burgdorferi/efectos de los fármacos , Borrelia burgdorferi/patogenicidad , Elementos Transponibles de ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Eliminación de Gen , Humanos , Peróxido de Hidrógeno/toxicidad , Enfermedad de Lyme/microbiología , Ratones , Ratones Endogámicos C3H , Viabilidad Microbiana , Mutagénesis Insercional , Estrés Oxidativo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA