Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 129(18): 2537-2546, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28251913

RESUMEN

Red blood cells (RBCs) demonstrate procoagulant properties in vitro, and elevated hematocrit is associated with reduced bleeding and increased thrombosis risk in humans. These observations suggest RBCs contribute to thrombus formation. However, effects of RBCs on thrombosis are difficult to assess because humans and mice with elevated hematocrit typically have coexisting pathologies. Using an experimental model of elevated hematocrit in healthy mice, we measured effects of hematocrit in 2 in vivo clot formation models. We also assessed thrombin generation, platelet-thrombus interactions, and platelet accumulation in thrombi ex vivo, in vitro, and in silico. Compared with controls, mice with elevated hematocrit (RBCHIGH) formed thrombi at a faster rate and had a shortened vessel occlusion time. Thrombi in control and RBCHIGH mice did not differ in size or fibrin content, and there was no difference in levels of circulating thrombin-antithrombin complexes. In vitro, increasing the hematocrit increased thrombin generation in the absence of platelets; however, this effect was reduced in the presence of platelets. In silico, direct numerical simulations of whole blood predicted elevated hematocrit increases the frequency and duration of interactions between platelets and a thrombus. When human whole blood was perfused over collagen at arterial shear rates, elevating the hematocrit increased the rate of platelet deposition and thrombus growth. These data suggest RBCs promote arterial thrombosis by enhancing platelet accumulation at the site of vessel injury. Maintaining a normal hematocrit may reduce arterial thrombosis risk in humans.


Asunto(s)
Antitrombina III/metabolismo , Arterias , Coagulación Sanguínea , Péptido Hidrolasas/metabolismo , Trombosis/metabolismo , Lesiones del Sistema Vascular/metabolismo , Animales , Arterias/lesiones , Arterias/metabolismo , Plaquetas , Femenino , Hematócrito , Humanos , Masculino , Ratones , Resistencia al Corte
2.
J Theor Biol ; 372: 159-67, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25769945

RESUMEN

To expand the buccal cavity, many suction-feeding fishes rely on a considerable contribution from dorsal rotation of the dorsal part of the head including the brains, eyes, and several bones forming the braincase and skull roof (jointly referred to as the neurocranium). As the neurocranium takes up a large part of the total mass of the head, this rotation may incur a considerable inertial cost. If so, this would suggest a significant selective pressure on the kinematics and mass distribution of the neurocranium of suction feeders. Here, an inverse dynamic model is formulated to calculate the instantaneous power required to rotate the neurocranium, approximated by a quarter ellipsoid volume of homogeneous density, as well as to calculate the instantaneous suction power based on intra-oral pressure and head volume quantifications. We applied this model to largemouth bass (Micropterus salmoides) and found that the power required to rotate the neurocranium accounts for only about 4% of the power required to suck water into the mouth. Furthermore, recovery of kinetic energy from the rotating neurocranium converted into suction work may be possible during the phase of neurocranial deceleration. Thus, we suggest that only a negligible proportion of the power output of the feeding muscles is lost as inertial costs in the largemouth bass. Consequently, the feeding performance of piscivorous suction feeders with generalised morphology, comparable to our model species, is not limited by neurocranial motion during head expansion. This suggests that it is thus not likely to be a factor of importance in the evolution of cranial shape and size.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conducta Alimentaria/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Animales , Lubina , Fenómenos Biomecánicos , Hidrodinámica , Modelos Biológicos , Boca/fisiología , Movimiento , Conducta Predatoria/fisiología , Presión , Rotación , Succión
3.
Biophys J ; 104(8): 1764-72, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23601323

RESUMEN

Computational simulations using a two-dimensional lattice-Boltzmann immersed boundary method were conducted to investigate the motion of platelets near a vessel wall and close to an intravascular thrombus. Physiological volume fractions of deformable red blood cells and rigid platelet-size elliptic particles were studied under arteriolar flow conditions. Tumbling of platelets in the red-blood-cell depleted zone near the vessel walls was strongly influenced by nearby red blood cells. The thickness of the red-blood-cell depleted zone was greatly reduced near a thrombus, and platelets in this zone were pushed close to the surface of the thrombus to distances that would facilitate their cohesion to it. The distance, nature, and duration of close platelet-thrombus encounters were influenced by the porosity of the thrombus. The strong influence on platelet-thrombus encounters of red-blood-cell motion and thrombus porosity must be taken into account to understand the dynamics of platelet attachment to a growing thrombus.


Asunto(s)
Arterias/fisiología , Plaquetas/fisiología , Agregación Plaquetaria , Trombosis/sangre , Animales , Plaquetas/patología , Movimiento Celular , Humanos , Modelos Biológicos
4.
J R Soc Interface ; 9(73): 1767-73, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22319101

RESUMEN

Suction feeding is the most common form of prey capture across aquatic feeding vertebrates and many adaptations that enhance efficiency and performance are expected. Many suction feeders have mechanisms that allow the mouth to form a planar and near-circular opening that is believed to have beneficial hydrodynamic effects. We explore the effects of the flattened and circular mouth opening through computational fluid dynamics simulations that allow comparisons with other mouth profiles. Compared to mouths with lateral notches, we find that the planar mouth opening results in higher flow rates into the mouth and a region of highest flow that is positioned at the centre of the mouth aperture. Planar mouths provide not only for better total fluid flow rates through the mouth but also through the centre of the mouth near where suction feeders position their prey. Circular mouths are shown to provide the quickest capture times for spherical and elliptical prey because they expose the prey item to a large region of high flow. Planar and circular mouths result in higher flow velocities with peak flow located at the centre of the mouth opening and they maximize the capacity of the suction feeders to exert hydrodynamic forces on the prey.


Asunto(s)
Ingestión de Alimentos/fisiología , Modelos Biológicos , Boca/anatomía & histología , Boca/fisiología , Vertebrados/anatomía & histología , Vertebrados/fisiología , Animales
5.
J R Soc Interface ; 7(44): 475-84, 2010 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19674998

RESUMEN

Suction feeding is the most commonly used mechanism of prey capture among aquatic vertebrates. Most previous models of the fluid flow caused by suction feeders involve making several untested assumptions. In this paper, a Chimera overset grids approach is used to solve the governing equations of fluid dynamics in order to investigate the assumptions that prey do not interact with the flow and that the flow can be modelled as a one-dimensional flow. Results show that, for small prey, both neglecting the prey and considering prey interaction give similar calculated forces exerted on the prey. However, as the prey item increases in size toward the size of the gape, its effect on the flow becomes more pronounced. This in turn affects both the magnitude of the hydrodynamic forces imparted to the prey and the time when maximum force is delivered. Maximum force is delivered most quickly to intermediate sized prey, about one-third of mouth diameter, and most slowly to prey less than 7 per cent or greater than 67 per cent of mouth diameter. This suggests that the effect of prey size on the timing of suction forces may have substantial consequences for the feeding ecology of suction feeders that are known to prefer prey between 25 and 50 per cent of mouth diameter. Moreover, for a 15 cm fish with a 15 mm gape, assuming a radial one-dimensional flow field can result in underestimating the maximum force exerted on a 5 mm diameter spherical prey 1 gape distance from the mouth by up to 28.7 per cent.


Asunto(s)
Simulación por Computador , Conducta Alimentaria , Peces/fisiología , Conducta Predatoria , Animales , Fenómenos Biomecánicos , Tamaño Corporal , Boca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA