Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochemistry (Mosc) ; 89(7): 1211-1238, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39218020

RESUMEN

Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.


Asunto(s)
Biomarcadores de Tumor , Vesículas Extracelulares , MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/metabolismo , MicroARNs/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biopsia Líquida/métodos
2.
Biochemistry (Mosc) ; 87(11): 1354-1366, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36509726

RESUMEN

Secreted extracellular vesicles (EVs) contain active biomolecules, including miRNAs, composition of which reflects epigenetic changes occurring in cells during pathological processes, in particular, malignant transformation. The accumulated pool of data on the role of EVs in carcinogenesis has stimulated investigations of the EV-derived cancer markers. The most important factor limiting development of this scientific direction is lack of "gold standards" both for methods of EV isolation from biological fluids and for analyzing their molecular content, including composition of miRNAs. Here we first examined efficacy of various methods for small RNA isolation from EVs contained in ascitic fluid for subsequent miRNA analysis. Comparison of different commercial kits showed advantages of the methods based on phenol-chloroform extraction: Total Exosome RNA & Protein Isolation Kit and miRNeasy Serum/Plasma Kit. Analysis of the small RNA transcriptome showed presence of various classes of molecules in the EVs, among which proportion of miRNAs averaged 6% and reaching 10% with the Total Exosome RNA & Protein Isolation Kit. The PureLink miRNA Isolation Kit demonstrated the lowest efficiency. The miRNeasy Advanced Serum/Plasma Kit showed the highest concentration of the small RNA fraction, miRNA proportion of which, however, did not exceed that obtained with the miRNeasy Serum/Plasma Kit and Total Exosome RNA & Protein Isolation Kit. Moreover, RT-PCR analysis of the individual molecules showed lower levels of each of investigated miRNAs (miR-1246, miR-200b-5p, miR-200c-3p, and miR-23a-3p) when using the miRNeasy Advanced Serum/Plasma Kit. In conclusion, Total Exosome RNA & Protein Isolation Kit and miRNeasy Serum/Plasma Kit can be considered as optimal kits in terms of performance based on combination of the studied characteristics, including small RNA concentration, percentage of microRNA according to bioanalyzer and sequencing results, and levels of individual miRNAs detected by RT-PCR.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , MicroARNs/metabolismo , Líquido Ascítico/metabolismo , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo
3.
J Cell Biochem ; 122(1): 100-115, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32951259

RESUMEN

Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin-1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non-small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin-1 and flotillin-2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin-1 as well as its EV-to-cellular ratio vary drastically depending on cell type.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Caveolina 1/metabolismo , Exosomas/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Líquido Ascítico/química , Líquidos Corporales/química , Femenino , Humanos , Neoplasias Glandulares y Epiteliales/metabolismo , Útero/química
4.
Biochim Biophys Acta Gen Subj ; 1868(1): 130522, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995879

RESUMEN

BACKGROUND: Activity-regulated cytoskeleton-associated (Arc) protein is predominantly expressed in excitatory glutamatergic neurons of vertebrates, where it plays a pivotal role in regulation of synaptic plasticity. Arc protein forms capsid-like particles, which can encapsulate and transfer mRNA in extracellular vesicles (EVs) between hippocampal neurons. Once glioma cell networks actively interact with neurons via paracrine signaling and formation of neurogliomal glutamatergic synapses, we predicted the involvement of Arc in a process of EV-mediated mRNA transfer between glioma cells. MATERIALS AND METHODS: Arc expression in three human glioma cell lines was evaluated by WB and immunocytochemistry. The properties of Arc protein/mRNA-containing EVs produced by glioma cells were analyzed by RT-PCR, TEM, and WB. Flow cytometry, RT-PCR, and fluorescent microscopy were used to show the involvement of Arc in EV-mediated mRNA transfer between glioma cells. RESULTS: It was found that human glioma cells can produce EVs containing Arc/Arg3.1 protein and Arc mRNA (or "Arc EVs"). Arc EVs from U87 glioma cells internalize and deliver Arc mRNA to recipient U87 cells, where it is translated into a protein. Arc overexpression significantly increases EV production, alters EV morphology, and enhances intercellular transfer of highly expressed mRNA in glioma cell culture. CONCLUSION: These findings indicate involvement of Arc EVs into mRNA transfer between glioma cells that could contribute to tumor progression and affect synaptic plasticity in cancer patients.


Asunto(s)
Vesículas Extracelulares , Glioma , Animales , Humanos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Productos del Gen gag/química , Productos del Gen gag/genética , Vesículas Extracelulares/metabolismo , Glioma/genética
5.
Pharmaceutics ; 16(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39065600

RESUMEN

Extracellular vesicles (EVs) are of growing interest in the context of screening for highly informative cancer markers. We have previously shown that uterine aspirate EVs (UA EVs) are a promising source of ovarian cancer (OC) diagnostic markers. In this study, we first conducted an integrative analysis of EV-miRNA profiles from UA, malignant ascitic fluid (AF), and a conditioned medium of cultured ascites cells (ACs). Using three software packages, we identified 79 differentially expressed miRNAs (DE-miRNAs) in UA EVs from OC patients and healthy individuals. To narrow down this panel and select miRNAs most involved in OC pathogenesis, we aligned these molecules with the DE-miRNA sets obtained by comparing the EV-miRNA profiles from OC-related biofluids with the same control. We found that 76% of the DE-miRNAs from the identified panel are similarly altered (differentially co-expressed) in AF EVs, as are 58% in AC EVs. Interestingly, the set of miRNAs differentially co-expressed in AF and AC EVs strongly overlaps (40 out of 44 miRNAs). Finally, the application of more rigorous criteria for DE assessment, combined with the selection of miRNAs that are differentially co-expressed in all biofluids, resulted in the identification of a panel of 29 miRNAs for ovarian cancer screening.

6.
Microsc Res Tech ; 86(7): 781-790, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37125595

RESUMEN

So far, only a few articles have demonstrated the possibility of correlated AFM-TEM imaging - sequential imaging of the same individual objects using atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The current work contributes to the development of this approach by giving a step-by-step procedure, which yields pairs of correlated AFM-TEM images. We describe the application of correlation AFM-TEM microscopy to lipid nanoparticles (small extracellular vesicles and liposomes). The sizes of individual particles measured by the two methods were in good agreement, taking the tip broadening into account. The correlated AFM-TEM imaging can be valuable for single-particle analysis and nanometrology.


Asunto(s)
Liposomas , Nanopartículas , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión
7.
Cells ; 11(7)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35406627

RESUMEN

Extracellular vesicles (EVs), including exosomes, are key factors of intercellular communication, performing both local and distant transfers of bioactive molecules. The increasingly obvious role of EVs in carcinogenesis, similarity of molecular signatures with parental cells, precise selection and high stability of cargo molecules make exosomes a promising source of liquid biopsy markers for cancer diagnosis. The uterine cavity fluid, unlike blood, urine and other body fluids commonly used to study EVs, is of local origin and therefore enriched in EVs secreted by cells of the female reproductive tract. Here, we show that EVs, including those corresponding to exosomes, could be isolated from individual samples of uterine aspirates (UA) obtained from epithelial ovarian cancer (EOC) patients and healthy donors using the ultracentrifugation technique. First, the conducted profiling of small RNAs (small RNA-seq) from UA-derived EVs demonstrated the presence of non-coding RNA molecules belonging to various classes. The analysis of the miRNA content in EVs from UA performed on a pilot sample revealed significant differences in the expression levels of a number of miRNAs in EVs obtained from EOC patients compared to healthy individuals. The results open up prospects for using UA-derived EVs as a source of markers for the diagnostics of gynecological cancers, including EOC.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Neoplasias , Biomarcadores/metabolismo , Detección Precoz del Cáncer , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Útero/metabolismo
8.
Cancers (Basel) ; 14(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35884376

RESUMEN

EVs are involved in local and distant intercellular communication and play a vital role in cancer development. Since EVs have been found in almost all body fluids, there are currently active attempts for their application in liquid diagnostics. Blood is the most commonly used source of EVs for the screening of cancer markers, although the percentage of tumor-derived EVs in the blood is extremely low. In contrast, GJ, as a local biofluid, is expected to be enriched with GC-associated EVs. However, EVs from GJ have never been applied for the screening and are underinvestigated overall. Here we show that EVs can be isolated from GJ by ultracentrifugation. TEM analysis showed high heterogeneity of GJ-derived EVs, including those with exosome-like size and morphology. In addition to morphological diversity, EVs from individual GJ samples differed in the composition of exosomal markers. We also show the presence of stomatin within GJ-derived EVs for the first time. The first conducted comparison of miRNA content in EVs from GC patients and healthy donors performed using a pilot sampling revealed the significant differences in several miRNAs (-135b-3p, -199a-3p, -451a). These results demonstrate the feasibility of the application of GJ-derived EVs for screening for miRNA GC markers.

9.
Micron ; 145: 103044, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676158

RESUMEN

Transmission electron microscopy (TEM) is the most widely accepted method for visualization of extracellular vesicles (EVs), and particularly, exosomes. TEM images provide us with information about the size and morphology of the EVs. We have developed an online tool ScanEV (Scanner for the Extracellular Vesicles, available at https://bioeng.ru/scanev), for the rapid and automated processing of such images. ScanEV is based on a convolutional neural network; it detects the «cup-shaped¼ particles in the images and calculates their morphometric parameters. This tool will be useful for researchers who study EVs and use TEM for their characterization.


Asunto(s)
Exosomas , Vesículas Extracelulares , Microscopía Electrónica de Transmisión , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA