Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biochem ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743322

RESUMEN

Aging is the most important risk factor for the development of cardiovascular diseases. Senescent cells release plethora of factors commonly known as the senescence-associated secretory phenotype, which can modulate the normal function of the vascular wall. It is currently not well understood if and how endothelial cell senescence can affect adventitial niche. The aim of this study was to characterize oxidative stress-induced endothelial cells senescence and identify their paracrine effects on the primary cell type of the adventitia, the fibroblasts. Human aortic endothelial cells (HAEC) were treated with hydrogen peroxide to induce premature senescence. Mass spectrometry analysis identified several proteomic changes in senescent HAEC with top upregulated secretory protein growth differentiation factor 15 (GDF-15). Treatment of the human adventitial fibroblast cell line (hAdv cells) with conditioned medium (CM) from senescent HAEC resulted in alterations in the proteome of hAdv cells identified in mass spectrometry analysis. Majority of differentially expressed proteins in hAdv cells treated with CM from senescent HAEC were involved in the uptake and metabolism of lipoproteins, mitophagy and ferroptosis. We next analyzed if some of these changes and pathways might be regulated by GDF-15. We found that recombinant GDF-15 affected some ferroptosis-related factors (e.g. ferritin) and decreased oxidative stress in the analyzed adventitial fibroblast cell line, but it had no effect on erastin-induced cell death. Contrary, silencing of GDF-15 in hAdv cells was protective against this ferroptotic stimuli. Our findings can be of importance for potential therapeutic strategies targeting cell senescence or ferroptosis to alleviate vascular diseases.

2.
Biochim Biophys Acta Gen Subj ; 1868(9): 130672, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025337

RESUMEN

BACKGROUND: Transport of molecules via exosomes is one of the factors involved in thyroid cancer development, and transported molecules may serve as cancer biomarkers. The aim of the study was to characterize protein content of thyroid-derived exosomes and their functional effect exerted on recipient cells. METHODS: LC-MS/MS proteomics of exosomes released by FTC and 8305C thyroid carcinoma cell lines, and Nthy-ori 3-1 normal thyroid follicular cells was performed, followed by bioinformatic analysis and functional tests (wound healing and Alamar Blue assays). RESULTS: Exosomes from Nthy-ori 3-1 cells had the highest number of 1504 proteins, while in exosomes from thyroid carcinoma FTC and 8305C cells 730 and 1304 proteins were identified, respectively. For proteins uniquely found in FTC- and 8305C-derived exosomes, enriched cancer-related gene ontology categories included cell adhesion, positive regulation of cell migration, N-glycosylation, drug resistance, and response to NK/T cell cytotoxicity. Furthermore, through label-free quantification (that identified differentially expressed proteins) and comparison with The Human Protein Atlas database several potential diagnostic and/or prognostic biomarkers were indicated. Finally, exosomes from FTC and 8305C cells displayed ability to stimulate migratory properties of recipient Nthy-ori 3-1 cells. Additionally, 8305C-derived exosomes increased recipient cell viability. CONCLUSIONS: Multiple proteins identified in thyroid cancer-derived exosomes have a direct link to thyroid cancer progression. Also, in functional tests exosomes enhanced growth and dissemination of non-transformed thyroid cells. GENERAL SIGNIFICANCE: The obtained results expands the knowledge concerning the role of exosomal proteins in thyroid cancer and indicate potential biomarkers for further evaluation in clinical settings.


Asunto(s)
Exosomas , Proteómica , Glándula Tiroides , Neoplasias de la Tiroides , Exosomas/metabolismo , Humanos , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteómica/métodos , Línea Celular Tumoral , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Homeostasis , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Espectrometría de Masas en Tándem
3.
Nat Commun ; 15(1): 4094, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750017

RESUMEN

tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.


Asunto(s)
Microscopía por Crioelectrón , ARN de Transferencia , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Uridina/química , Uridina/metabolismo , Mutación , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Acetilación , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA