Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187546

RESUMEN

Osteocytes, the most abundant and mechanosensitive cells in bone tissue, play a pivotal role in bone homeostasis and mechano-responsiveness, orchestrating the intricate balance between bone formation and resorption under daily activity. Studying osteocyte connectivity and understanding their intricate arrangement within the lacunar canalicular network (LCN) is essential for unraveling bone physiology. This is particularly true as our bones age, which is associated with decreased integrity of the osteocyte network, disrupted mass transport, and lower sensitivity to the mechanical stimuli that allow the skeleton to adapt to changing demands. Much work has been carried out to investigate this relationship, often involving high resolution microscopy of discrete fragments of this network, alongside advanced computational modelling of individual cells. However, traditional methods of segmenting and measuring osteocyte connectomics are time-consuming and labour-intensive, often hindered by human subjectivity and limited throughput. In this study, we explore the application of deep learning and computer vision techniques to automate the segmentation and measurement of osteocyte connectomics, enabling more efficient and accurate analysis. We compare several state-of-the-art computer vision models (U-Nets and Vision Transformers) to successfully segment the LCN, finding that an Attention U-Net model can accurately segment and measure 81.8% of osteocytes and 42.1% of dendritic processes, when compared to manual labelling. While further development is required, we demonstrate that this degree of accuracy is already sufficient to distinguish between bones of young (2 month old) and aged (36 month old) mice, as well as capturing the degeneration induced by genetic modification of osteocytes. By harnessing the power of these advanced technologies, further developments can unravel the complexities of osteocyte networks in unprecedented detail, revolutionising our understanding of bone health and disease.

2.
Eur Heart J Cardiovasc Imaging ; 24(10): 1363-1373, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37699069

RESUMEN

AIMS: Left ventricular systolic dysfunction (LSVD) is a heterogeneous condition with several factors influencing prognosis. Better phenotyping of asymptomatic individuals can inform preventative strategies. This study aims to explore the clinical phenotypes of LVSD in initially asymptomatic subjects and their association with clinical outcomes and cardiovascular abnormalities through multi-dimensional data clustering. METHODS AND RESULTS: Clustering analysis was performed on 60 clinically available variables from 1563 UK Biobank participants without pre-existing heart failure (HF) and with left ventricular ejection fraction (LVEF) < 50% on cardiovascular magnetic resonance (CMR) assessment. Risks of developing HF, other cardiovascular events, death, and a composite of major adverse cardiovascular events (MACE) associated with clusters were investigated. Cardiovascular imaging characteristics, not included in the clustering analysis, were also evaluated. Three distinct clusters were identified, differing considerably in lifestyle habits, cardiovascular risk factors, electrocardiographic parameters, and cardiometabolic profiles. A stepwise increase in risk profile was observed from Cluster 1 to Cluster 3, independent of traditional risk factors and LVEF. Compared with Cluster 1, the lowest risk subset, the risk of MACE ranged from 1.42 [95% confidence interval (CI): 1.03-1.96; P < 0.05] for Cluster 2 to 1.72 (95% CI: 1.36-2.35; P < 0.001) for Cluster 3. Cluster 3, the highest risk profile, had features of adverse cardiovascular imaging with the greatest LV re-modelling, myocardial dysfunction, and decrease in arterial compliance. CONCLUSIONS: Clustering of clinical variables identified three distinct risk profiles and clinical trajectories of LVSD amongst initially asymptomatic subjects. Improved characterization may facilitate tailored interventions based on the LVSD sub-type and improve clinical outcomes.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Función Ventricular Izquierda , Volumen Sistólico , Factores de Riesgo , Pronóstico , Medición de Riesgo
3.
JACC Cardiovasc Imaging ; 16(7): 905-915, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37407123

RESUMEN

BACKGROUND: Ischemic heart disease (IHD) has been linked with poor brain outcomes. The brain magnetic resonance imaging-derived difference between predicted brain age and actual chronological age (brain-age delta in years, positive for accelerated brain aging) may serve as an effective means of communicating brain health to patients to promote healthier lifestyles. OBJECTIVES: The authors investigated the impact of prevalent IHD on brain aging, potential underlying mechanisms, and its relationship with dementia risk, vascular risk factors, cardiovascular structure, and function. METHODS: Brain age was estimated in subjects with prevalent IHD (n = 1,341) using a Bayesian ridge regression model with 25 structural (volumetric) brain magnetic resonance imaging features and built using UK Biobank participants with no prevalent IHD (n = 35,237). RESULTS: Prevalent IHD was linked to significantly accelerated brain aging (P < 0.001) that was not fully mediated by microvascular injury. Brain aging (positive brain-age delta) was associated with increased risk of dementia (OR: 1.13 [95% CI: 1.04-1.22]; P = 0.002), vascular risk factors (such as diabetes), and high adiposity. In the absence of IHD, brain aging was also associated with cardiovascular structural and functional changes typically observed in aging hearts. However, such alterations were not linked with risk of dementia. CONCLUSIONS: Prevalent IHD and coexisting vascular risk factors are associated with accelerated brain aging and risk of dementia. Positive brain-age delta representing accelerated brain aging may serve as an effective communication tool to show the impact of modifiable risk factors and disease supporting preventative strategies.


Asunto(s)
Demencia , Isquemia Miocárdica , Humanos , Teorema de Bayes , Valor Predictivo de las Pruebas , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/epidemiología , Isquemia Miocárdica/complicaciones , Factores de Riesgo , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Demencia/epidemiología , Demencia/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA