Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 24(1): 587, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38741073

RESUMEN

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Vía de Señalización Hippo , Oxaliplatino , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteína p53 Supresora de Tumor , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Vía de Señalización Hippo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/uso terapéutico , Oxaliplatino/farmacología , Porfirinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Verteporfina/farmacología , Verteporfina/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo
2.
Biochem J ; 473(22): 4129-4143, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27623778

RESUMEN

The silent information regulator 1 (Sirt1) has been shown to have negative effects on the Notch pathway in several contexts. We bring evidence that Sirt1 has a positive effect on Notch activation in Drosophila, in the context of sensory organ precursor specification and during wing development. The phenotype of Sirt1 mutant resembles weak Notch loss-of-function phenotypes, and genetic interactions of Sirt1 with the components of the Notch pathway also suggest a positive role for Sirt1 in Notch signalling. Sirt1 is necessary for the efficient activation of enhancer of split [E(spl)] genes by Notch in S2N cells. Additionally, the Notch-dependent response of several E(spl) genes is sensitive to metabolic stress caused by 2-deoxy-d-glucose treatment, in a Sirt1-dependent manner. We found Sirt1 associated with several proteins involved in Notch repression as well as activation, including the cofactor exchange factor Ebi (TBL1), the RLAF/LAF histone chaperone complex and the Tip60 acetylation complex. Moreover, Sirt1 participates in the deacetylation of the CSL transcription factor Suppressor of Hairless. The role of Sirt1 in Notch signalling is, therefore, more complex than previously recognized, and its diverse effects may be explained by a plethora of Sirt1 substrates involved in the regulation of Notch signalling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Sirtuina 1/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Desoxiglucosa/farmacología , Drosophila , Proteínas de Drosophila/genética , Inmunoprecipitación , Espectrometría de Masas , Unión Proteica , Interferencia de ARN/fisiología , ARN Mensajero/antagonistas & inhibidores , Receptores Notch/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/genética
3.
Viruses ; 15(9)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37766375

RESUMEN

This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies.


Asunto(s)
Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Cromatina , FN-kappa B , Nucleosomas
4.
Nat Commun ; 12(1): 4503, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301927

RESUMEN

Promoter-proximal pausing of RNA polymerase II is a key process regulating gene expression. In latent HIV-1 cells, it prevents viral transcription and is essential for latency maintenance, while in acutely infected cells the viral factor Tat releases paused polymerase to induce viral expression. Pausing is fundamental for HIV-1, but how it contributes to bursting and stochastic viral reactivation is unclear. Here, we performed single molecule imaging of HIV-1 transcription. We developed a quantitative analysis method that manages multiple time scales from seconds to days and that rapidly fits many models of promoter dynamics. We found that RNA polymerases enter a long-lived pause at latent HIV-1 promoters (>20 minutes), thereby effectively limiting viral transcription. Surprisingly and in contrast to current models, pausing appears stochastic and not obligatory, with only a small fraction of the polymerases undergoing long-lived pausing in absence of Tat. One consequence of stochastic pausing is that HIV-1 transcription occurs in bursts in latent cells, thereby facilitating latency exit and providing a rationale for the stochasticity of viral rebounds.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/genética , VIH-1/genética , Regiones Promotoras Genéticas/genética , Latencia del Virus/genética , Algoritmos , ARN Polimerasas Dirigidas por ADN/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Células HeLa , Humanos , Modelos Genéticos , Procesos Estocásticos , Factores de Tiempo , Activación Viral/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
5.
Sci Rep ; 11(1): 5752, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707576

RESUMEN

Alterations to cell polarization or to intercellular junctions are often associated with epithelial cancer progression, including breast cancers (BCa). We show here that the loss of the junctional scaffold protein MAGI1 is associated with bad prognosis in luminal BCa, and promotes tumorigenesis. E-cadherin and the actin binding scaffold AMOTL2 accumulate in MAGI1 deficient cells which are subjected to increased stiffness. These alterations are associated with low YAP activity, the terminal Hippo-pathway effector, but with an elevated ROCK and p38 Stress Activated Protein Kinase activities. Blocking ROCK prevented p38 activation, suggesting that MAGI1 limits p38 activity in part through releasing actin strength. Importantly, the increased tumorigenicity of MAGI1 deficient cells is rescued in the absence of AMOTL2 or after inhibition of p38, demonstrating that MAGI1 acts as a tumor-suppressor in luminal BCa by inhibiting an AMOTL2/p38 stress pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiomotinas/metabolismo , Neoplasias de la Mama/prevención & control , Carcinogénesis/patología , Moléculas de Adhesión Celular/metabolismo , Guanilato-Quinasas/metabolismo , Transducción de Señal , Estrés Fisiológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinogénesis/metabolismo , Moléculas de Adhesión Celular/deficiencia , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Guanilato-Quinasas/deficiencia , Humanos , Fenotipo , Unión Proteica , Proteínas Señalizadoras YAP/metabolismo , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
6.
Sci Rep ; 10(1): 4401, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157127

RESUMEN

Mitochondrial dysfunctions belong amongst the most common metabolic diseases but the signalling networks that lead to the manifestation of a disease phenotype are often not well understood. We identified the subunits of respiratory complex I, III and IV as mediators of major signalling changes during Drosophila wing disc development. Their downregulation in larval wing disc leads to robust stimulation of TOR activity, which in turn orchestrates a complex downstream signalling network. Specifically, after downregulation of the complex I subunit ND-49 (mammalian NDUFS2), TOR activates JNK to induce cell death and ROS production essential for the stimulation of compensatory apoptosis-induced proliferation within the tissue. Additionally, TOR upregulates Notch and JAK/STAT signalling and it directs glycolytic switch of the target tissue. Our results highlight the central role of TOR signalling in mediating the complex response to mitochondrial respiratory dysfunction and they provide a rationale why the disease symptoms associated with respiratory dysfunctions are often alleviated by mTOR inhibitors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Alas de Animales/crecimiento & desarrollo , Animales , Regulación hacia Abajo , Drosophila , Proteínas de Drosophila/genética , Complejo I de Transporte de Electrón/metabolismo , Quinasas Janus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción STAT/metabolismo , Alas de Animales/metabolismo
7.
Open Biol ; 6(2): 150155, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26887408

RESUMEN

Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues.


Asunto(s)
Ciclo del Ácido Cítrico/genética , Regulación de la Expresión Génica , Glucólisis/genética , Receptores Notch/metabolismo , Animales , Sitios de Unión , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metabolismo Energético/genética , Expresión Génica , Genes Reporteros , Humanos , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Receptores Notch/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA