Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852195

RESUMEN

PURPOSE: Demonstrating and assessing self-supervised machine-learning fitting of the VERDICT (vascular, extracellular and restricted diffusion for cytometry in tumors) model for prostate cancer. METHODS: We derive a self-supervised neural network for fitting VERDICT (ssVERDICT) that estimates parameter maps without training data. We compare the performance of ssVERDICT to two established baseline methods for fitting diffusion MRI models: conventional nonlinear least squares and supervised deep learning. We do this quantitatively on simulated data by comparing the Pearson's correlation coefficient, mean-squared error, bias, and variance with respect to the simulated ground truth. We also calculate in vivo parameter maps on a cohort of 20 prostate cancer patients and compare the methods' performance in discriminating benign from cancerous tissue via Wilcoxon's signed-rank test. RESULTS: In simulations, ssVERDICT outperforms the baseline methods (nonlinear least squares and supervised deep learning) in estimating all the parameters from the VERDICT prostate model in terms of Pearson's correlation coefficient, bias, and mean-squared error. In vivo, ssVERDICT shows stronger lesion conspicuity across all parameter maps, and improves discrimination between benign and cancerous tissue over the baseline methods. CONCLUSION: ssVERDICT significantly outperforms state-of-the-art methods for VERDICT model fitting and shows, for the first time, fitting of a detailed multicompartment biophysical diffusion MRI model with machine learning without the requirement of explicit training labels.

2.
BJOG ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956748

RESUMEN

OBJECTIVE: To utilise combined diffusion-relaxation MRI techniques to interrogate antenatal changes in the placenta prior to extreme preterm birth among both women with PPROM and membranes intact, and compare this to a control group who subsequently delivered at term. DESIGN: Observational study. SETTING: Tertiary Obstetric Unit, London, UK. POPULATION: Cases: pregnant women who subsequently spontaneously delivered a singleton pregnancy prior to 32 weeks' gestation without any other obstetric complications. CONTROLS: pregnant women who delivered an uncomplicated pregnancy at term. METHODS: All women consented to an MRI examination. A combined diffusion-relaxation MRI of the placenta was undertaken and analysed using fractional anisotropy, a combined T2*-apparent diffusion coefficient model and a combined T2*-intravoxel incoherent motion model, in order to provide a detailed placental phenotype associated with preterm birth. Subgroup analyses based on whether women in the case group had PPROM or intact membranes at time of scan, and on latency to delivery were performed. MAIN OUTCOME MEASURES: Fractional anisotropy, apparent diffusion coefficients and T2* placental values, from two models including a combined T2*-IVIM model separating fast- and slow-flowing (perfusing and diffusing) compartments. RESULTS: This study included 23 women who delivered preterm and 52 women who delivered at term. Placental T2* was lower in the T2*-apparent diffusion coefficient model (p < 0.001) and in the fast- and slow-flowing compartments (p = 0.001 and p < 0.001) of the T2*-IVIM model. This reached a higher level of significance in the preterm prelabour rupture of the membranes group than in the membranes intact group. There was a reduced perfusion fraction among the cases with impending delivery. CONCLUSIONS: Placental diffusion-relaxation reveals significant changes in the placenta prior to preterm birth with greater effect noted in cases of preterm prelabour rupture of the membranes. Application of this technique may allow clinically valuable interrogation of histopathological changes before preterm birth. In turn, this could facilitate more accurate antenatal prediction of preterm chorioamnionitis and so aid decisions around the safest time of delivery. Furthermore, this technique provides a research tool to improve understanding of the pathological mechanisms associated with preterm birth in vivo.

3.
Magn Reson Med ; 89(3): 1151-1159, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36255151

RESUMEN

PURPOSE: Preterm premature rupture of membranes complicates up to 40% of premature deliveries. Fetal infection may occur in the absence of maternal symptoms, delaying diagnosis and increasing morbidity and mortality. A noninvasive antenatal assessment of early signs of placental inflammation is therefore urgently required. METHODS: Sixteen women with preterm premature rupture of membranes < 34 weeks gestation and 60 women with uncomplicated pregnancies were prospectively recruited. A modified diffusion-weighted spin-echo single shot EPI sequence with a diffusion preparation acquiring 264 unique parameter combinations in < 9 min was obtained on a clinical 3 Tesla MRI scanner. The data was fitted to a 2-compartment T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel incoherent motion model comprising fast and slowly circulating fluid pools to obtain quantitative information on perfusion, density, and tissue composition. Z values were calculated, and correlation with time from between the rupture of membranes and the scan, gestational age at delivery, and time between scan and delivery assessed. RESULTS: Placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ was significantly reduced in preterm premature rupture of membranes, and the 2-compartmental model demonstrated that this decline is mainly linked to the perfusion component observed in the placental parenchyma. Multi-modal MRI measurement of placental function is linked to gestational age at delivery and time from membrane rupture. CONCLUSION: More complex models and data acquisition can potentially improve fitting of the underlying etiology of preterm birth compared with individual single-contrast models and contribute to additional insights in the future. This will need validation in larger cohorts. A multi-modal MRI acquisition between rupture of the membranes and delivery can be used to measure placental function and is linked to gestational age at delivery.


Asunto(s)
Rotura Prematura de Membranas Fetales , Nacimiento Prematuro , Femenino , Recién Nacido , Embarazo , Humanos , Nacimiento Prematuro/diagnóstico por imagen , Placenta/diagnóstico por imagen , Rotura Prematura de Membranas Fetales/diagnóstico por imagen , Edad Gestacional , Inflamación
4.
Magn Reson Med ; 90(3): 1137-1150, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183839

RESUMEN

PURPOSE: Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. METHODS: Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion ( T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit. RESULTS: There was a significant decline in placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). The T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). CONCLUSION: Whole placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.


Asunto(s)
Benchmarking , Placenta , Humanos , Femenino , Embarazo , Placenta/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física)
5.
Magn Reson Med ; 86(5): 2684-2691, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34268807

RESUMEN

PURPOSE: To provide a new approach to jointly assess microstructural and molecular properties of the human placenta in vivo fast and efficiently and to present initial evidence in cohorts of healthy pregnancies and those affected by pre-eclampsia. METHODS: Slice and diffusion preparation shuffling, built on the previously proposed ZEBRA method, is presented as a robust and fast way to obtain T1 and apparent diffusivity coefficient (ADC) values. Joint modeling and evaluation is performed on a cohort of healthy and pre-eclamptic participants at 3T. RESULTS: The datasets show the ability to obtain robust and fast T1 -ADC measurements. Significant decay over gestation in T1 (-11 ms/week, P<.05 ) and a trend toward significance in ADC (-0.23 mm/ s2 /week, P = .08) values can be observed in a control cohort. Values for the pre-eclamptic pregnancies show a negative trend for both ADC and T1 . CONCLUSIONS: The presented sequence allows the simultaneous acquisition of 2 of the most promising quantitative parameters to study placental insufficiency-identified individually as relevant in previous studies-in under 2 minutes. This allows dynamic assessment of physiological processes, reduced inconsistency in spatial comparisons due to reduced motion artefacts and opens novel avenues for analysis. Initial results in pre-eclamptic placentas, with depicted changes in both ADC and T1 , illustrate its potential to identify cases of placental insufficiency. Future work will focus on expanding the field-of-view using multi-band acceleration techniques and the expansion to larger and more diverse patient groups.


Asunto(s)
Placenta , Preeclampsia , Difusión , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Placenta/diagnóstico por imagen , Preeclampsia/diagnóstico por imagen , Embarazo
6.
Magn Reson Med ; 86(6): 2987-3011, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34411331

RESUMEN

Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T1 , T2 , and T2∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Difusión , Imagen por Resonancia Magnética , Modelos Teóricos
7.
Magn Reson Med ; 82(1): 95-106, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883915

RESUMEN

PURPOSE: A combined diffusion-relaxometry MR acquisition and analysis pipeline for in vivo human placenta, which allows for exploration of coupling between T2* and apparent diffusion coefficient (ADC) measurements in a sub 10-minute scan time. METHODS: We present a novel acquisition combining a diffusion prepared spin echo with subsequent gradient echoes. The placentas of 17 pregnant women were scanned in vivo, including both healthy controls and participants with various pregnancy complications. We estimate the joint T2* -ADC spectra using an inverse Laplace transform. RESULTS: T2* -ADC spectra demonstrate clear quantitative separation between normal and dysfunctional placentas. CONCLUSIONS: Combined T2* -diffusivity MRI is promising for assessing fetal and maternal health during pregnancy. The T2* -ADC spectrum potentially provides additional information on tissue microstructure, compared to measuring these two contrasts separately. The presented method is immediately applicable to the study of other organs.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Enfermedades Placentarias/diagnóstico por imagen , Placenta/diagnóstico por imagen , Procesamiento de Señales Asistido por Computador , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Humanos , Preeclampsia/diagnóstico por imagen , Embarazo
8.
Magn Reson Med ; 81(2): 1191-1204, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30242899

RESUMEN

PURPOSE: To investigate, visualize and quantify the physiology of the human placenta in several dimensions - functional, temporal over gestation, and spatial over the whole organ. METHODS: Bespoke MRI techniques, combining a rich diffusion protocol, anatomical data and T2* mapping together with a multi-modal pipeline including motion correction and extracted quantitative features were developed and employed on pregnant women between 22 and 38 weeks gestational age including two pregnancies diagnosed with pre-eclampsia. RESULTS: A multi-faceted assessment was demonstrated showing trends of increasing lacunarity, and decreasing T2* and diffusivity over gestation. CONCLUSIONS: The obtained multi-modal acquisition and quantification shows promising opportunities for studying evolution, adaptation and compensation processes.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Placenta/diagnóstico por imagen , Preeclampsia/diagnóstico por imagen , Diagnóstico Prenatal/métodos , Algoritmos , Anisotropía , Artefactos , Femenino , Feto , Edad Gestacional , Humanos , Análisis de los Mínimos Cuadrados , Modelos Anatómicos , Movimiento (Física) , Embarazo
9.
Biophys J ; 115(9): 1741-1754, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30274829

RESUMEN

State-of-the-art single-particle tracking (SPT) techniques can generate long trajectories with high temporal and spatial resolution. This offers the possibility of mechanistically interpreting particle movements and behavior in membranes. To this end, a number of statistical techniques have been developed that partition SPT trajectories into states with distinct diffusion signatures, allowing a statistical analysis of diffusion state dynamics and switching behavior. Here, we develop a confinement model, within a hidden Markov framework, that switches between phases of free diffusion and confinement in a harmonic potential well. By using a Markov chain Monte Carlo algorithm to fit this model, automated partitioning of individual SPT trajectories into these two phases is achieved, which allows us to analyze confinement events. We demonstrate the utility of this algorithm on a previously published interferometric scattering microscopy data set, in which gold-nanoparticle-tagged ganglioside GM1 lipids were tracked in model membranes. We performed a comprehensive analysis of confinement events, demonstrating that there is heterogeneity in the lifetime, shape, and size of events, with confinement size and shape being highly conserved within trajectories. Our observations suggest that heterogeneity in confinement events is caused by both individual nanoparticle characteristics and the binding-site environment. The individual nanoparticle heterogeneity ultimately limits the ability of interferometric scattering microscopy to resolve molecule dynamics to the order of the tag size; homogeneous tags could potentially allow the resolution to be taken below this limit by deconvolution methods. In a wider context, the presented harmonic potential well confinement model has the potential to detect and characterize a wide variety of biological phenomena, such as hop diffusion, receptor clustering, and lipid rafts.


Asunto(s)
Cadenas de Markov , Modelos Moleculares , Algoritmos , Difusión , Gangliósido G(M1)/química , Oro/química , Nanopartículas del Metal/química , Método de Montecarlo
10.
Magn Reson Med ; 80(2): 756-766, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29230859

RESUMEN

PURPOSE: To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta. METHODS: The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion. RESULTS: Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue. CONCLUSION: Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microcirculación/fisiología , Placenta/irrigación sanguínea , Placenta/diagnóstico por imagen , Anisotropía , Teorema de Bayes , Femenino , Humanos , Embarazo
11.
Res Sq ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343847

RESUMEN

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR<0.001), with changes most evident after 30 weeks gestation. A Significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR=0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.

12.
Sci Rep ; 14(1): 12357, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811636

RESUMEN

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.


Asunto(s)
Cardiopatías Congénitas , Imagen por Resonancia Magnética , Placenta , Placentación , Humanos , Femenino , Embarazo , Cardiopatías Congénitas/diagnóstico por imagen , Adulto , Placenta/diagnóstico por imagen , Placenta/patología , Imagen por Resonancia Magnética/métodos , Estudios de Casos y Controles
13.
medRxiv ; 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37333076

RESUMEN

Purpose: Demonstrating quantitative multi-parametric mapping in the placenta with combined T2∗-diffusion MRI at low-field (0.55T). Methods: We present 57 placental MRI scans performed on a commercially available 0.55T scanner. We acquired the images using a combined T2∗-diffusion technique scan that simultaneously acquires multiple diffusion preparations and echo times. We processed the data to produce quantitative T2∗ and diffusivity maps using a combined T2∗-ADC model. We compared the derived quantitative parameters across gestation in healthy controls and a cohort of clinical cases. Results: Quantitative parameter maps closely resemble those from previous experiments at higher field strength, with similar trends in T2∗ and ADC against gestational age observed. Conclusion: Combined T2∗-diffusion placental MRI is reliably achievable at 0.55T. The advantages of lower field strength - such as cost, ease of deployment, increased accessibility and patient comfort due to the wider bore, and increased T2∗ for larger dynamic ranges - can support the widespread roll out of placental MRI as an adjunct to ultrasound during pregnancy.

14.
Placenta ; 144: 29-37, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37952367

RESUMEN

INTRODUCTION: In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS: We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS: We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION: By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Placenta , Embarazo , Humanos , Femenino , Placenta/diagnóstico por imagen , Microcirculación , Retardo del Crecimiento Fetal , Imagen por Resonancia Magnética/métodos , Placentación
15.
Neuroimage Clin ; 39: 103483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37572514

RESUMEN

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise.


Asunto(s)
Aprendizaje Profundo , Trastornos Migrañosos , Humanos , Imagen de Difusión Tensora/métodos , Inteligencia Artificial , Imagen de Difusión por Resonancia Magnética/métodos , Trastornos Migrañosos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
16.
Diagnostics (Basel) ; 12(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35885536

RESUMEN

False positives on multiparametric MRIs (mp-MRIs) result in many unnecessary invasive biopsies in men with clinically insignificant diseases. This study investigated whether quantitative diffusion MRI could differentiate between false positives, true positives and normal tissue non-invasively. Thirty-eight patients underwent mp-MRI and Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors (VERDICT) MRI, followed by transperineal biopsy. The patients were categorized into two groups following biopsy: (1) significant cancer­true positive, 19 patients; (2) atrophy/inflammation/high-grade prostatic intraepithelial neoplasia (PIN)­false positive, 19 patients. The clinical apparent diffusion coefficient (ADC) values were obtained, and the intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) and VERDICT models were fitted via deep learning. Significant differences (p < 0.05) between true positive and false positive lesions were found in ADC, IVIM perfusion fraction (f) and diffusivity (D), DKI diffusivity (DK) (p < 0.0001) and kurtosis (K) and VERDICT intracellular volume fraction (fIC), extracellular−extravascular volume fraction (fEES) and diffusivity (dEES) values. Significant differences between false positives and normal tissue were found for the VERDICT fIC (p = 0.004) and IVIM D. These results demonstrate that model-based diffusion MRI could reduce unnecessary biopsies occurring due to false positive prostate lesions and shows promising sensitivity to benign diseases.

17.
Placenta ; 104: 138-145, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33341490

RESUMEN

INTRODUCTION: We aimed to explore the use of magnetic resonance imaging (MRI) in vivo as a tool to elucidate the placental phenotype in women with chronic hypertension. METHODS: In case-control study, women with chronic hypertension and those with uncomplicated pregnancies were imaged using either a 3T Achieva or 1.5T Ingenia scanner. T2-weighted images, diffusion weighted and T1/T2* relaxometry data was acquired. Placental T2*, T1 and apparent diffusion coefficient (ADC) maps were calculated. RESULTS: 129 women (43 with chronic hypertension and 86 uncomplicated pregnancies) were imaged at a median of 27.7 weeks' gestation (interquartile range (IQR) 23.9-32.1) and 28.9 (IQR 26.1-32.9) respectively. Visual analysis of T2-weighted imaging demonstrated placentae to be either appropriate for gestation or to have advanced lobulation in women with chronic hypertension, resulting in a greater range of placental mean T2* values for a given gestation, compared to gestation-matched controls. Both skew and kurtosis (derived from histograms of T2* values across the whole placenta) increased with advancing gestational age at imaging in healthy pregnancies; women with chronic hypertension had values overlapping those in the control group range. Upon visual assessment, the mean ADC declined in the third trimester, with a corresponding decline in placental mean T2* values and showed an overlap of values between women with chronic hypertension and the control group. DISCUSSION: A combined placental MR examination including T2 weighted imaging, T2*, T1 mapping and diffusion imaging demonstrates varying placental phenotypes in a cohort of women with chronic hypertension, showing overlap with the control group.


Asunto(s)
Hipertensión/diagnóstico por imagen , Imagen por Resonancia Magnética , Placenta/diagnóstico por imagen , Adulto , Estudios de Casos y Controles , Femenino , Edad Gestacional , Humanos , Embarazo , Ultrasonografía Prenatal
18.
Med Image Anal ; 71: 102045, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33934005

RESUMEN

We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single-contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These spectrum-based approaches allow model-free investigation of tissue properties, but require regularised inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show in simulations that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi-contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. Our InSpect code is available at github.com/paddyslator/inspect.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Placenta , Algoritmos , Femenino , Humanos , Imagen por Resonancia Magnética , Embarazo
19.
Top Magn Reson Imaging ; 28(5): 255-264, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31592992

RESUMEN

In utero diffusion magnetic resonance imaging (MRI) provides unique opportunities to noninvasively study the microstructure of tissue during fetal development. A wide range of developmental processes, such as the growth of white matter tracts in the brain, the maturation of placental villous trees, or the fibers in the fetal heart remain to be studied and understood in detail. Advances in fetal interventions and surgery furthermore increase the need for ever more precise antenatal diagnosis from fetal MRI. However, the specific properties of the in utero environment, such as fetal and maternal motion, increased field-of-view, tissue interfaces and safety considerations, are significant challenges for most MRI techniques, and particularly for diffusion. Recent years have seen major improvements, driven by the development of bespoke techniques adapted to these specific challenges in both acquisition and processing. Fetal diffusion MRI, an emerging research tool, is now adding valuable novel information for both research and clinical questions. This paper will highlight specific challenges, outline strategies to target them, and discuss two main applications: fetal brain connectomics and placental maturation.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Enfermedades Fetales/diagnóstico por imagen , Diagnóstico Prenatal/métodos , Femenino , Humanos , Embarazo
20.
Placenta ; 79: 78-82, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30396518

RESUMEN

The Centre for Medical Image Computing (CMIC) at University College London (UCL) hosted a two-day workshop on placenta imaging on April 12th and 13th 2018. The workshop consisted of 10 invited talks, 3 contributed talks, a poster session, a public interaction session and a panel discussion about the future direction of placental imaging. With approximately 50 placental researchers in attendance, the workshop was a platform for engineers, clinicians and medical experts in the field to network and exchange ideas. Attendees had the chance to explore over 20 posters with subjects ranging from the movement of blood within the placenta to the efficient segmentation of fetal MRI using deep learning tools. UCL public engagement specialists also presented a poster, encouraging attendees to learn more about how to engage patients and the public with their research, creating spaces for mutual learning and dialogue.


Asunto(s)
Placenta/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Embarazo , Ultrasonografía , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA