Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Genomics ; 19(1): 722, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285621

RESUMEN

BACKGROUND: Transposome-based technologies have enabled the streamlined production of sequencer-ready DNA libraries; however, current methods are highly sensitive to the amount and quality of input nucleic acid. RESULTS: We describe a new library preparation technology (Nextera DNA Flex) that utilizes a known concentration of transposomes conjugated directly to beads to bind a fixed amount of DNA, and enables direct input of blood and saliva using an integrated extraction protocol. We further report results from libraries generated outside the standard parameters of the workflow, highlighting novel applications for Nextera DNA Flex, including human genome builds and variant calling from below 1 ng DNA input, customization of insert size, and preparation of libraries from short fragments and severely degraded FFPE samples. Using this bead-linked library preparation method, library yield saturation was observed at an input amount of 100 ng. Preparation of libraries from a range of species with varying GC levels demonstrated uniform coverage of small genomes. For large and complex genomes, coverage across the genome, including difficult regions, was improved compared with other library preparation methods. Libraries were successfully generated from amplicons of varying sizes (from 50 bp to 11 kb), however, a decrease in efficiency was observed for amplicons smaller than 250 bp. This library preparation method was also compatible with poor-quality DNA samples, with sequenceable libraries prepared from formalin-fixed paraffin-embedded samples with varying levels of degradation. CONCLUSIONS: In contrast to solution-based library preparation, this bead-based technology produces a normalized, sequencing-ready library for a wide range of DNA input types and amounts, largely obviating the need for DNA quantitation. The robustness of this bead-based library preparation kit and flexibility of input DNA facilitates application across a wide range of fields.


Asunto(s)
Elementos Transponibles de ADN/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microesferas , Flujo de Trabajo , Genoma Humano/genética , Humanos , Imanes/química , Plásmidos/genética
2.
Nucleic Acids Res ; 41(10): e112, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23580546

RESUMEN

We present an intramolecular reaction, Reflex™, to derive shorter, sequencer-ready, daughter polymerase chain reaction products from a pooled population of barcoded long-range polymerase chain reaction products, whilst still preserving the cognate DNA barcodes. Our Reflex workflow needs only a small number of primer extension steps to rapidly enable uniform sequence coverage of long contiguous sequence targets in large numbers of samples at low cost on desktop next-generation sequencers.


Asunto(s)
Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN/métodos , Citocromo P-450 CYP2D6/genética , Cartilla de ADN/química , Humanos
3.
Genes Chromosomes Cancer ; 53(1): 38-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166983

RESUMEN

VHL is mutated in the majority of patients with clear cell renal cell carcinoma (ccRCC), with conflicting clinical relevance. Recent studies have identified recurrent mutations in histone modifying and chromatin remodeling genes, including BAP1, PBRM1, SETD2, KDM6A, and JARID1c. Current evidence suggests that BAP1 mutations are associated with aggressive disease. The clinical significance of the remaining genes is unknown. In this study, targeted sequencing of VHL and JARID1c (entire genes) and coding regions of BAP1, PBRM1, SETD2, and KDM6A was performed on 132 ccRCCs and matched normal tissues. Associations between mutations and clinical and pathological outcomes were interrogated. Inactivation of VHL (coding mutation or promoter methylation) was seen in 75% of ccRCCs. Somatic noncoding VHL alterations were identified in 29% of ccRCCs and may be associated with improved overall survival. BAP1 (11%), PBRM1 (33%), SETD2 (16%), JARID1c (4%), and KDM6A (3%) mutations were identified. BAP1-mutated tumors were associated with metastatic disease at presentation (P = 0.023), advanced clinical stage (P = 0.042) and a trend towards shorter recurrence free survival (P = 0.059) when compared with tumors exclusively mutated for PBRM1. Our results support those of recent publications pointing towards a role for BAP1 and PBRM1 mutations in risk stratifying ccRCCs. Further investigation of noncoding alterations in VHL is warranted.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas Portadoras/genética , Neoplasias Renales/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Anciano , Carcinoma de Células Renales/patología , Ensamble y Desensamble de Cromatina , Proteínas del Citoesqueleto , Metilación de ADN/genética , Proteínas de Unión al ADN , Femenino , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Chaperonas Moleculares , Oxidorreductasas N-Desmetilantes/genética , Estudios Retrospectivos
4.
Biochemistry ; 48(27): 6326-34, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19473041

RESUMEN

The plasmid replication initiator protein, RepD, greatly stimulates the ability of the DNA helicase, PcrA, to unwind plasmid lengths of DNA. Unwinding begins at oriD, the double-stranded origin of replication that RepD recognizes and covalently binds to initiate replication. Using a combination of plasmids containing oriD and oligonucleotide structures that mimic parts of oriD, the kinetics of DNA nicking and separation have been determined, along with the coupling ratio between base separation and ATP hydrolysis. At 30 degrees C, the rate of nicking is 1.0 s(-1), and translocation is approximately 30 bp s(-1). During translocation, the coupling ratio is one ATP hydrolyzed per base pair separated, the same as the value previously reported for ATP hydrolyzed per base moved by PcrA along single-stranded DNA. The data suggest that processivity is high, such that several thousand base-pair plasmids are unwound by a single molecule of PcrA. In the absence of RepD, a single PcrA is unable to separate even short lengths (10 to 40 bp) of double stranded DNA.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , ADN/metabolismo , Geobacillus stearothermophilus/enzimología , Plásmidos , Secuencia de Bases , Cartilla de ADN , Hidrólisis , Cinética , Reacción en Cadena de la Polimerasa
5.
J Biomol Screen ; 18(2): 219-25, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22983166

RESUMEN

The Aurora kinases are a group of serine/threonine protein kinases that regulate key steps during mitosis, and deregulation of these proteins (e.g., by gene amplification or overexpression) has been linked to a wide variety of tumor types. Thus, Aurora-A and Aurora-B have been intensely studied as targets for anticancer therapy and are now clinically validated targets. Here we report on the development of a novel fluorescence intensity binding assay for Aurora-A kinase inhibitors using a fluorescently labeled probe compound that shows intramolecular quenching when unbound but exhibits a dramatic increase in fluorescence when bound to Aurora-A.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Espectrometría de Fluorescencia/métodos , Aurora Quinasa B , Aurora Quinasas , Unión Competitiva/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Ligandos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo
6.
J Mol Biol ; 392(4): 1020-32, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19647000

RESUMEN

The superfamily 1 bacterial helicase PcrA has a role in the replication of certain plasmids, acting with the initiator protein (RepD) that binds to and nicks the double-stranded origin of replication. PcrA also translocates single-stranded DNA with discrete steps of one base per ATP hydrolyzed. Individual rate constants have been determined for the DNA helicase PcrA ATPase cycle when bound to either single-stranded DNA or a double-stranded DNA junction that also has RepD bound. The fluorescent ATP analogue 2'(3')-O-(N-methylanthraniloyl)ATP was used throughout all experiments to provide a complete ATPase cycle for a single nucleotide species. Fluorescence intensity and anisotropy stopped-flow measurements were used to determine rate constants for binding and release. Quenched-flow measurements provided the kinetics of the hydrolytic cleavage step. The fluorescent phosphate sensor MDCC-PBP was used to measure phosphate release kinetics. The chemical cleavage step is the rate-limiting step in the cycle and is essentially irreversible and would result in the bound ATP complex being a major component at steady state. This cleavage step is greatly accelerated by bound DNA, producing the high activation of this protein compared to the protein alone. The data suggest the possibility that ADP is released in two steps, which would result in bound ADP also being a major intermediate, with bound ADP.P(i) being a very small component. It therefore seems likely that the major transition in structure occurs during the cleavage step, rather than P(i) release. ATP rebinding could then cause reversal of this structural transition. The kinetic mechanism of the PcrA ATPase cycle is very little changed by potential binding to RepD, supporting the idea that RepD increases the processivity of PcrA by increasing affinity to DNA rather than affecting the enzymatic properties per se.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Geobacillus stearothermophilus/enzimología , Adenosina Trifosfato/metabolismo , Secuencia de Bases , ADN/metabolismo , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Hidrólisis , Modelos Biológicos , Datos de Secuencia Molecular , Oxígeno/metabolismo , Fosfatos/metabolismo , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA