Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(3): 531-547, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809767

RESUMEN

Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.


Asunto(s)
Disautonomía Familiar , Enfermedades Neurodegenerativas , Degeneración Retiniana , Ratones , Animales , Disautonomía Familiar/genética , Cinetina , Ataxia de la Marcha , Administración Oral
2.
Am J Hum Genet ; 109(8): 1534-1548, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35905737

RESUMEN

Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.


Asunto(s)
Disautonomía Familiar , Enfermedades Neurodegenerativas , Animales , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Exones/genética , Humanos , Ratones , Enfermedades Neurodegenerativas/genética , Precursores del ARN/genética , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
3.
Hum Mol Genet ; 31(11): 1776-1787, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34908112

RESUMEN

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.


Asunto(s)
Disautonomía Familiar , Péptidos y Proteínas de Señalización Intracelular , Enfermedades Neurodegenerativas , Enfermedades del Nervio Óptico , Células Ganglionares de la Retina , Animales , Modelos Animales de Enfermedad , Disautonomía Familiar/patología , Humanos , Ratones , Enfermedades Neurodegenerativas/patología , Enfermedades del Nervio Óptico/patología , Células Ganglionares de la Retina/patología
4.
Hum Mol Genet ; 30(10): 908-922, 2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-33822942

RESUMEN

Mucolipidosis IV (MLIV) is an orphan disease leading to debilitating psychomotor deficits and vision loss. It is caused by loss-of-function mutations in the MCOLN1 gene that encodes the lysosomal transient receptor potential channel mucolipin1, or TRPML1. With no existing therapy, the unmet need in this disease is very high. Here, we showed that AAV-mediated CNS-targeted gene transfer of the human MCOLN1 gene rescued motor function and alleviated brain pathology in the MLIV mouse model. Using the AAV-PHP.b vector in symptomatic mice, we showed long-term reversal of declined motor function and significant delay of paralysis. Next, using self-complementary AAV9 clinical candidate vector, we showed that its intracerebroventricular administration in post-natal day 1 mice significantly improved motor function, myelination and reduced lysosomal storage load in the MLIV mouse brain. Based on our data and general advancements in the gene therapy field, we propose scAAV9-mediated CSF-targeted MCOLN1 gene transfer as a therapeutic strategy in MLIV.


Asunto(s)
Terapia Genética , Mucolipidosis/terapia , Enfermedades del Sistema Nervioso/terapia , Canales de Potencial de Receptor Transitorio/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Mutación con Pérdida de Función/genética , Lisosomas/genética , Lisosomas/patología , Ratones , Mucolipidosis/líquido cefalorraquídeo , Mucolipidosis/genética , Mucolipidosis/patología , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología
5.
Eur Heart J ; 43(17): 1668-1680, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245370

RESUMEN

AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-ß signalling molecules and spectrin ß. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention.


Asunto(s)
Prolapso de la Válvula Mitral , Adulto , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Prolapso de la Válvula Mitral/genética , Proteómica , Factores de Riesgo
6.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30905397

RESUMEN

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Asunto(s)
Disautonomía Familiar/terapia , Cinetina/uso terapéutico , Propiocepción , Empalme del ARN , Factores de Elongación Transcripcional/genética , Alelos , Animales , Conducta Animal , Línea Celular , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Exones , Fibroblastos , Genotipo , Humanos , Intrones , Cinetina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Fenotipo
7.
Nature ; 525(7567): 109-13, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26258302

RESUMEN

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Asunto(s)
Cadherinas/genética , Cadherinas/metabolismo , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/patología , Mutación/genética , Animales , Tipificación del Cuerpo/genética , Proteínas Relacionadas con las Cadherinas , Cadherinas/deficiencia , Movimiento Celular/genética , Cromosomas Humanos Par 11/genética , Femenino , Humanos , Masculino , Ratones , Válvula Mitral/anomalías , Válvula Mitral/embriología , Válvula Mitral/patología , Válvula Mitral/cirugía , Linaje , Fenotipo , Estabilidad Proteica , ARN Mensajero/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Hum Mol Genet ; 27(14): 2466-2476, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29701768

RESUMEN

Familial dysautonomia (FD) is a rare genetic disease with no treatment, caused by an intronic point mutation (c.2204+6T>C) that negatively affects the definition of exon 20 in the elongator complex protein 1 gene (ELP1 also known as IKBKAP). This substitution modifies the 5' splice site and, in combination with regulatory splicing factors, induces different levels of exon 20 skipping, in various tissues. Here, we evaluated the therapeutic potential of a novel class of U1 snRNA molecules, exon-specific U1s (ExSpeU1s), in correcting ELP1 exon 20 recognition. Lentivirus-mediated expression of ELP1-ExSpeU1 in FD fibroblasts improved ELP1 splicing and protein levels. We next focused on a transgenic mouse model that recapitulates the same tissue-specific mis-splicing seen in FD patients. Intraperitoneal delivery of ELP1-ExSpeU1s-adeno-associated virus particles successfully increased the production of full-length human ELP1 transcript and protein. This splice-switching class of molecules is the first to specifically correct the ELP1 exon 20 splicing defect. Our data provide proof of principle of ExSpeU1s-adeno-associated virus particles as a novel therapeutic strategy for FD.


Asunto(s)
Proteínas Portadoras/genética , Disautonomía Familiar/terapia , Terapia Genética , ARN Nuclear Pequeño/genética , Empalme Alternativo/genética , Animales , Proteínas Portadoras/uso terapéutico , Dependovirus/genética , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Disautonomía Familiar/fisiopatología , Exones/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Intrones/genética , Ratones , Ratones Transgénicos , Empalme del ARN/genética , ARN Nuclear Pequeño/uso terapéutico , Factores de Elongación Transcripcional
9.
Hum Mol Genet ; 27(15): 2725-2738, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771310

RESUMEN

Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/patología , Encéfalo/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Mucolipidosis/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Encefalitis/genética , Encefalitis/metabolismo , Encefalitis/patología , Femenino , Regulación de la Expresión Génica , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Ratones Noqueados , Mucolipidosis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
10.
FASEB J ; 32(2): 782-794, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030399

RESUMEN

The transient receptor potential cation channel mucolipin 1 (TRPML1) channel is a conduit for lysosomal calcium efflux, and channel activity may be affected by lysosomal contents. The lysosomes of retinal pigmented epithelial (RPE) cells are particularly susceptible to build-up of lysosomal waste products because they must degrade the outer segments phagocytosed daily from adjacent photoreceptors; incomplete degradation leads to accumulation of lipid waste in lysosomes. This study asks whether stimulation of TRPML1 can release lysosomal calcium in RPE cells and whether such release is affected by lysosomal accumulations. The TRPML agonist ML-SA1 raised cytoplasmic calcium levels in mouse RPE cells, hesRPE cells, and ARPE-19 cells; this increase was rapid, robust, reversible, and reproducible. The increase was not altered by extracellular calcium removal or by thapsigargin but was eliminated by lysosomal rupture with glycyl-l-phenylalanine-ß-naphthylamide. Treatment with desipramine to inhibit acid sphingomyelinase or YM201636 to inhibit PIKfyve also reduced the cytoplasmic calcium increase triggered by ML-SA1, whereas RPE cells from TRPML1-/- mice showed no response to ML-SA1. Cotreatment with chloroquine and U18666A induced formation of neutral, autofluorescent lipid in RPE lysosomes and decreased lysosomal Ca2+ release. Lysosomal Ca2+ release was also impaired in RPE cells from the ATP-binding cassette, subfamily A, member 4-/- mouse model of Stargardt's retinal dystrophy. Neither TRPML1 mRNA nor total lysosomal calcium levels were altered in these models, suggesting a more direct effect on the channel. In summary, stimulation of TRPML1 elevates cytoplasmic calcium levels in RPE cells, but this response is reduced by lysosomal accumulation.-Gómez, N. M., Lu, W. Lim, J. C., Kiselyov, K., Campagno, K. E., Grishchuk, Y., Slaugenhaupt, S. A., Pfeffer, B., Fliesler, S. J., Mitchell, C. H. Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation.


Asunto(s)
Señalización del Calcio , Metabolismo de los Lípidos , Lisosomas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Lisosomas/patología , Degeneración Macular/congénito , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Ratones , Ratones Noqueados , Ftalimidas/farmacología , Quinolinas/farmacología , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/genética
11.
Eur Heart J ; 39(15): 1269-1277, 2018 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-29020406

RESUMEN

Aims: Filamin-A (FLNA) was identified as the first gene of non-syndromic mitral valve dystrophy (FLNA-MVD). We aimed to assess the phenotype of FLNA-MVD and its impact on prognosis. Methods and results: We investigated the disease in 246 subjects (72 mutated) from four FLNA-MVD families harbouring three different FLNA mutations. Phenotype was characterized by a comprehensive echocardiography focusing on mitral valve apparatus in comparison with control relatives. In this X-linked disease valves lesions were severe in men and moderate in women. Most men had classical features of mitral valve prolapse (MVP), but without chordal rupture. By contrast to regular MVP, mitral leaflet motion was clearly restricted in diastole and papillary muscles position was closer to mitral annulus. Valvular abnormalities were similar in the four families, in adults and young patients from early childhood suggestive of a developmental disease. In addition, mitral valve lesions worsened over time as encountered in degenerative conditions. Polyvalvular involvement was frequent in males and non-diagnostic forms frequent in females. Overall survival was moderately impaired in men (P = 0.011). Cardiac surgery rate (mainly valvular) was increased (33.3 ± 9.8 vs. 5.0 ± 4.9%, P < 0.0001; hazard ratio 10.5 [95% confidence interval: 2.9-37.9]) owing mainly to a lifetime increased risk in men (76.8 ± 14.1 vs. 9.1 ± 8.7%, P < 0.0001). Conclusion: FLNA-MVD is a developmental and degenerative disease with complex phenotypic expression which can influence patient management. FLNA-MVD has unique features with both MVP and paradoxical restricted motion in diastole, sub-valvular mitral apparatus impairment and polyvalvular lesions in males. FLNA-MVD conveys a substantial lifetime risk of valve surgery in men.


Asunto(s)
Filaminas/genética , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/patología , Válvula Mitral/patología , Adolescente , Adulto , Ecocardiografía , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Válvula Mitral/diagnóstico por imagen , Mutación/genética , Fenotipo , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
12.
Hum Mol Genet ; 25(6): 1116-28, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26769677

RESUMEN

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.


Asunto(s)
Modelos Animales de Enfermedad , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Empalme Alternativo , Animales , Vías Autónomas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Disautonomía Familiar/genética , Exones , Humanos , Péptidos y Proteínas de Señalización Intracelular , Intrones , Masculino , Ratones , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo
13.
Am J Pathol ; 186(1): 199-209, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26608452

RESUMEN

Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1(-/-) mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1(-/-) retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1(-/-) mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1(-/-) mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.


Asunto(s)
Mucolipidosis/patología , Nervio Óptico/patología , Distrofias Retinianas/patología , Animales , Western Blotting , Modelos Animales de Enfermedad , Electrorretinografía , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucolipidosis/complicaciones , Tomografía de Coherencia Óptica , Canales de Potencial de Receptor Transitorio/deficiencia , Canales de Potencial de Receptor Transitorio/genética
14.
Circulation ; 131(3): 263-8, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25361552

RESUMEN

BACKGROUND: Knowledge of mitral valve prolapse (MVP) inheritance is based on pedigree observation and M-mode echocardiography. The extent of familial clustering of MVP among unselected individuals in the community using current, more specific echocardiographic criteria is unknown. In addition, the importance of nondiagnostic MVP morphologies (NDMs; first described in large pedigrees) has not been investigated in the general population. We hypothesized that parental MVP and NDMs increase the risk of offspring MVP. METHODS AND RESULTS: Study participants were 3679 Generation 3 individuals with available parental data in the Offspring or the New Offspring Spouse cohorts. MVP and NDMs were distinguished by leaflet displacement >2 versus ≤2 mm beyond the mitral annulus, respectively. We compared MVP prevalence in Generation 3 participants with at least 1 parent with MVP (n=186) with that in individuals without parental MVP (n=3493). Among 3679 participants (53% women; mean age, 40±9 years), 49 (1%) had MVP. Parental MVP was associated with a higher prevalence of MVP in Generation 3 participants (10 of 186, 5.4%) compared with no parental MVP (39 of 3493, 1.1%; adjusted odds ratio, 4.51; 95% confidence interval, 2.13-9.54; P<0.0001). When parental NDMs were examined alone, the prevalence of Generation 3 MVP remained higher (12 of 484, 2.5%) compared with those without parental MVP or NDMs (27 of 3009, 0.9%; adjusted odds ratio, 2.52; 95% confidence interval, 1.25-5.10; P=0.01). CONCLUSIONS: Parental MVP and NDMs are associated with increased prevalence of offspring MVP, highlighting the genetic substrate of MVP and the potential clinical significance of NDMs in the community.


Asunto(s)
Familia , Prolapso de la Válvula Mitral/epidemiología , Prolapso de la Válvula Mitral/genética , Características de la Residencia , Adulto , Análisis por Conglomerados , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prolapso de la Válvula Mitral/diagnóstico
15.
Sci Rep ; 14(1): 570, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177237

RESUMEN

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 (ELP1) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9; Elp1Δ20/flox. This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.


Asunto(s)
Disautonomía Familiar , Humanos , Ratones , Animales , Disautonomía Familiar/genética , Disautonomía Familiar/metabolismo , Disautonomía Familiar/patología , Proteínas Portadoras/metabolismo , Sistema Nervioso Periférico/metabolismo , Células Receptoras Sensoriales/metabolismo , Perfilación de la Expresión Génica , Expresión Génica
16.
Hum Mol Genet ; 20(21): 4093-101, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21821670

RESUMEN

Recent studies emphasize the importance of mRNA splicing in human genetic disease, as 20-30% of all disease-causing mutations are predicted to result in mRNA splicing defects. The plasticity of the mRNA splicing reaction has made these mutations attractive candidates for the development of therapeutics. Familial dysautonomia (FD) is a severe neurodegenerative disorder, and all patients have an intronic IVS20+6T>C splice site mutation in the IKBKAP gene, which results in tissue-specific skipping of exon 20 and a corresponding reduction in ikappaB kinase complex associated protein (IKAP) levels. We created transgenic mouse lines using a human IKBKAP bacterial artificial chromosome (BAC) into which we inserted the IKBKAP splice mutation (FD BAC) and have shown that the transgenic mice exhibit the same tissue-specific aberrant splicing patterns as seen in FD patients. We have previously demonstrated that the plant cytokinin kinetin can significantly improve the production of wild-type IKBKAP transcripts in FD lymphoblast cell lines by improving exon inclusion. In this study, we tested the ability of kinetin to alter IKBKAP splicing in the transgenic mice carrying the FD BAC and show that it corrects IKBKAP splicing in all major tissues assayed, including the brain. The amount of wild-type IKBKAP mRNA and IKAP protein was significantly higher in the kinetin-treated mice. These exciting results prove that treatment of FD, as well as other mechanistically related splicing disorders, with kinetin holds great promise as a potential therapeutic aimed at increasing normal protein levels, which may, in turn, slow disease progression.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Suplementos Dietéticos , Cinetina/farmacología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Dieta , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intracelular , Cinetina/administración & dosificación , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
17.
Differentiation ; 84(1): 103-16, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22579502

RESUMEN

Atrioventricular valve development commences with an EMT event whereby endocardial cells transform into mesenchyme. The molecular events that induce this phenotypic change are well understood and include many growth factors, signaling components, and transcription factors. Besides their clear importance in valve development, the role of these transformed mesenchyme and the function they serve in the developing prevalve leaflets is less understood. Indeed, we know that these cells migrate, but how and why do they migrate? We also know that they undergo a transition to a mature, committed cell, largely defined as an interstitial fibroblast due to their ability to secrete various matrix components including collagen type I. However, we have yet to uncover mechanisms by which the matrix is synthesized, how it is secreted, and how it is organized. As valve disease is largely characterized by altered cell number, cell activation, and matrix disorganization, answering questions of how the valves are built will likely provide us with information of real clinical relevance. Although expression profiling and descriptive or correlative analyses are insightful, to advance the field, we must now move past the simplicity of these assays and ask fundamental, mechanistic based questions aimed at understanding how valves are "built". Herein we review current understandings of atrioventricular valve development and present what is known and what isn't known. In most cases, basic, biological questions and hypotheses that were presented decades ago on valve development still are yet to be answered but likely hold keys to uncovering new discoveries with relevance to both embryonic development and the developmental basis of adult heart valve diseases. Thus, the goal of this review is to remind us of these questions and provide new perspectives on an old theme of valve development.


Asunto(s)
Válvulas Cardíacas/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Embrión de Pollo , Colágeno Tipo I/metabolismo , Cojinetes Endocárdicos/citología , Endocardio/citología , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Cardiopatías Congénitas/embriología , Enfermedades de las Válvulas Cardíacas/embriología , Enfermedades de las Válvulas Cardíacas/etiología , Humanos , Mesodermo/citología , Ratones , Válvula Mitral/embriología , Válvula Mitral/patología , Válvula Tricúspide/embriología , Válvula Tricúspide/patología
18.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37808686

RESUMEN

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 ( ELP1 ) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9 ; Elp1 Δ 20/flox . This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.

19.
Sci Rep ; 13(1): 18600, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903840

RESUMEN

Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 (ELP1) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical foundational data for translation to FD patients.


Asunto(s)
Disautonomía Familiar , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Células Ganglionares de la Retina/metabolismo , Disautonomía Familiar/genética , Disautonomía Familiar/terapia , Disautonomía Familiar/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Empalme del ARN , Terapia Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
20.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37293016

RESUMEN

Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 ( ELP1 ) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently, patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical data foundation for translation to FD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA