Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 163(6): 1468-83, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638074

RESUMEN

Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memoria a Largo Plazo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3' , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Ratones , Poliadenilación , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Serina Endopeptidasas/genética , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química
2.
Cell ; 159(3): 530-42, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417105

RESUMEN

Aggregation of damaged or misfolded proteins is a protective mechanism against proteotoxic stress, abnormalities of which underlie many aging-related diseases. Here, we show that in asymmetrically dividing yeast cells, aggregation of cytosolic misfolded proteins does not occur spontaneously but requires new polypeptide synthesis and is restricted to the surface of ER, which harbors the majority of active translation sites. Protein aggregates formed on ER are frequently also associated with or are later captured by mitochondria, greatly constraining aggregate mobility. During mitosis, aggregates are tethered to well-anchored maternal mitochondria, whereas mitochondria acquired by the bud are largely free of aggregates. Disruption of aggregate-mitochondria association resulted in increased mobility and leakage of mother-accumulated aggregates into the bud. Cells with advanced replicative age exhibit gradual decline of aggregates-mitochondria association, likely contributing to their diminished ability to rejuvenate through asymmetric cell division.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , División Celular , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Agregado de Proteínas , Biosíntesis de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Estrés Fisiológico
3.
Cell ; 150(2): 304-16, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817893

RESUMEN

The centromere is a specialized chromosomal structure that regulates chromosome segregation. Centromeres are marked by a histone H3 variant. In budding yeast, the histone H3 variant Cse4 is present in a single centromeric nucleosome. Experimental evidence supports several different models for the structure of centromeric nucleosomes. To investigate Cse4 copy number in live yeast, we developed a method coupling fluorescence correlation spectroscopy and calibrated imaging. We find that centromeric nucleosomes have one copy of Cse4 during most of the cell cycle, whereas two copies are detected at anaphase. The proposal of an anaphase-coupled structural change is supported by Cse4-Cse4 interactions, incorporation of Cse4, and the absence of Scm3 in anaphase. Nucleosome reconstitution and ChIP suggests both Cse4 structures contain H2A/H2B. The increase in Cse4 intensity and deposition at anaphase are also observed in Candida albicans. Our experimental evidence supports a cell-cycle-coupled oscillation of centromeric nucleosome structure in yeast.


Asunto(s)
Candida albicans/citología , Ciclo Celular , Centrómero/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/citología , Anafase , Candida albicans/química , Candida albicans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102683

RESUMEN

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.


Asunto(s)
Proteínas de Homeodominio , Tretinoina , Ratones , Animales , Tretinoina/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones Transgénicos , Tubo Neural/metabolismo , Hibridación Fluorescente in Situ , Elementos de Facilitación Genéticos
5.
Cell ; 147(5): 1186-96, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118470

RESUMEN

During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother and that Bni1p formin regulates this transport. Here, we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking, and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data do not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , División Celular , Calor , Unión Proteica
6.
Nature ; 555(7697): 475-482, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539637

RESUMEN

Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/química , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas , Modelos Moleculares , Estabilidad Proteica , Transporte de Proteínas , Transporte de ARN
7.
PLoS Genet ; 17(7): e1009642, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252077

RESUMEN

Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.


Asunto(s)
Evolución Biológica , Characidae/fisiología , Relojes Circadianos/genética , Proteínas de Peces/genética , Animales , Encéfalo/fisiología , Cuevas , Characidae/genética , Relojes Circadianos/fisiología , Evolución Molecular , Regulación de la Expresión Génica , Genética de Población , Hibridación Fluorescente in Situ , Hígado/fisiología , Melatonina/metabolismo , Mutación , Sueño/genética , Sueño/fisiología
8.
Mol Cell ; 60(3): 435-45, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26527278

RESUMEN

Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.


Asunto(s)
ADN Polimerasa II/metabolismo , Mitosis/fisiología , Factor B de Elongación Transcripcional Positiva/metabolismo , Elongación de la Transcripción Genética/fisiología , Activación Transcripcional/fisiología , Células HEK293 , Células HeLa , Humanos
9.
Proc Natl Acad Sci U S A ; 117(50): 31861-31870, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257578

RESUMEN

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.


Asunto(s)
Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Modelos Moleculares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/aislamiento & purificación , Proteínas Co-Represoras/metabolismo , Estudios de Factibilidad , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Microscopía Intravital , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/química , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 297(1): 100862, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34116057

RESUMEN

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Elonguina/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Polimerasa II/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , ADN Helicasas/química , ADN Helicasas/ultraestructura , Reparación del ADN/genética , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/ultraestructura , Elonguina/química , Elonguina/ultraestructura , Humanos , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/ultraestructura , ARN Polimerasa II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación/genética
11.
Genome Res ; 27(9): 1501-1512, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28784834

RESUMEN

Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.


Asunto(s)
Proteínas de Homeodominio/genética , Mapas de Interacción de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Cromatina/genética , Genoma/genética , Ratones , Células Madre Embrionarias de Ratones , Unión Proteica/genética , Proteómica
12.
Methods ; 159-160: 157-164, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30794906

RESUMEN

Elongin A binds to Elongins B and C to form the RNA polymerase II transcription elongation factor Elongin. It also functions as the substrate recognition subunit of a ubiquitin ligase that is formed by binding of Elongin to Cullin protein CUL5 and RING finger protein RBX2 and that targets RNA polymerase II for ubiquitination. In this article, we describe use of acceptor photobleaching fluorescence resonance energy transfer (AP-FRET) and laser microirradiation-based assays to study regulated assembly of the Elongin ubiquitin ligase and its recruitment to regions of localized DNA damage.


Asunto(s)
Daño del ADN , Elonguina/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/metabolismo , ADN/metabolismo , ADN/efectos de la radiación , Eucariontes/enzimología , Eucariontes/metabolismo , Rayos Láser
13.
Proc Natl Acad Sci U S A ; 114(33): E6857-E6866, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760978

RESUMEN

The synaptonemal complex (SC), a structure highly conserved from yeast to mammals, assembles between homologous chromosomes and is essential for accurate chromosome segregation at the first meiotic division. In Drosophila melanogaster, many SC components and their general positions within the complex have been dissected through a combination of genetic analyses, superresolution microscopy, and electron microscopy. Although these studies provide a 2D understanding of SC structure in Drosophila, the inability to optically resolve the minute distances between proteins in the complex has precluded its 3D characterization. A recently described technology termed expansion microscopy (ExM) uniformly increases the size of a biological sample, thereby circumventing the limits of optical resolution. By adapting the ExM protocol to render it compatible with structured illumination microscopy, we can examine the 3D organization of several known Drosophila SC components. These data provide evidence that two layers of SC are assembled. We further speculate that each SC layer may connect two nonsister chromatids, and present a 3D model of the Drosophila SC based on these findings.


Asunto(s)
Drosophila melanogaster/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Complejo Sinaptonémico/ultraestructura , Animales , Femenino , Microscopía Inmunoelectrónica/métodos
14.
Proc Natl Acad Sci U S A ; 114(23): 5838-5845, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28584089

RESUMEN

Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3' enhancer of Hoxa1 This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.


Asunto(s)
Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Proteína Homeótica Nanog/genética , Transducción de Señal , Animales , Línea Celular , Células Madre Embrionarias/citología , Ratones , Modelos Genéticos , Proteína Homeótica Nanog/metabolismo
15.
PLoS Biol ; 14(1): e1002361, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26812143

RESUMEN

Amyloids are ordered protein aggregates that are typically associated with neurodegenerative diseases and cognitive impairment. By contrast, the amyloid-like state of the neuronal RNA binding protein Orb2 in Drosophila was recently implicated in memory consolidation, but it remains unclear what features of this functional amyloid-like protein give rise to such diametrically opposed behaviour. Here, using an array of biophysical, cell biological and behavioural assays we have characterized the structural features of Orb2 from the monomer to the amyloid state. Surprisingly, we find that Orb2 shares many structural traits with pathological amyloids, including the intermediate toxic oligomeric species, which can be sequestered in vivo in hetero-oligomers by pathological amyloids. However, unlike pathological amyloids, Orb2 rapidly forms amyloids and its toxic intermediates are extremely transient, indicating that kinetic parameters differentiate this functional amyloid from pathological amyloids. We also observed that a well-known anti-amyloidogenic peptide interferes with long-term memory in Drosophila. These results provide structural insights into how the amyloid-like state of the Orb2 protein can stabilize memory and be nontoxic. They also provide insight into how amyloid-based diseases may affect memory processes.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas de Drosophila/metabolismo , Consolidación de la Memoria , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Masculino , Mutación , Oligopéptidos , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Levaduras , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética
16.
J Biol Chem ; 292(16): 6431-6437, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28292928

RESUMEN

Elongin A performs dual functions as the transcriptionally active subunit of RNA polymerase II (Pol II) elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that ubiquitylates Pol II in response to DNA damage. Assembly of the Elongin A ubiquitin ligase and its recruitment to sites of DNA damage is a tightly regulated process induced by DNA-damaging agents and α-amanitin, a drug that induces Pol II stalling. In this study, we demonstrate (i) that Elongin A and the ubiquitin ligase subunit CUL5 associate in cells with the Cockayne syndrome B (CSB) protein and (ii) that this interaction is also induced by DNA-damaging agents and α-amanitin. In addition, we present evidence that the CSB protein promotes stable recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. Our findings are consistent with the model that the Elongin A ubiquitin ligase and the CSB protein function together in a common pathway in response to Pol II stalling and DNA damage.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Alfa-Amanitina/metabolismo , Línea Celular , Proteínas Cullin/metabolismo , Reparación del ADN , Elonguina , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Mutación , Plásmidos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Factores de Transcripción/genética
17.
Genome Res ; 25(8): 1229-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26025802

RESUMEN

The clustered Hox genes, which are highly conserved across metazoans, encode homeodomain-containing transcription factors that provide a blueprint for segmental identity along the body axis. Recent studies have underscored that in addition to encoding Hox genes, the homeotic clusters contain key noncoding RNA genes that play a central role in development. In this study, we have taken advantage of genome-wide approaches to provide a detailed analysis of retinoic acid (RA)-induced transcriptional and epigenetic changes within the homeotic clusters of mouse embryonic stem cells. Although there is a general colinear response, our analyses suggest a lack of strict colinearity for several genes in the HoxA and HoxB clusters. We have identified transcribed novel noncoding RNAs (ncRNAs) and their cis-regulatory elements that function in response to RA and demonstrated that the expression of these ncRNAs from both strands represent some of the most rapidly induced transcripts in ES cells. Finally, we have provided dynamic analyses of chromatin modifications for the coding and noncoding genes expressed upon activation and suggest that active transcription can occur in the presence of chromatin modifications and machineries associated with repressed transcription state over the clusters. Overall, our data provide a resource for a better understanding of the dynamic nature of the coding and noncoding transcripts and their associated chromatin marks in the regulation of homeotic gene transcription during development.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Proteínas de Homeodominio/genética , ARN no Traducido/genética , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Animales , Línea Celular , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Elementos Reguladores de la Transcripción/efectos de los fármacos
18.
J Biol Chem ; 290(24): 15030-41, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25878247

RESUMEN

Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription.


Asunto(s)
Mutágenos/farmacología , Estrés Oxidativo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Elonguina , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente Indirecta , Células HEK293 , Humanos , ARN Mensajero/genética , Tretinoina/farmacología , Rayos Ultravioleta
19.
EMBO J ; 31(1): 236-47, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21934650

RESUMEN

Arp2/3 complex initiates the growth of branched actin-filament networks by inducing actin polymerization from the sides of pre-existing filaments. Nucleation promoting factors (NPFs) are essential for the branching reaction through interactions with the Arp2/3 complex prior to branch formation. The modes by which NPFs bind Arp2/3 complex and associated conformational changes have remained elusive. Here, we used electron microscopy to determine three-dimensional structures at ~2 nm resolution of Arp2/3 complex with three different bound NPFs: N-WASp, Scar-VCA and cortactin. All of these structures adopt a conformation with the two actin-related proteins in an actin-filament-like dimer and the NPF bound to the pointed end. Distance constraints derived by fluorescence resonance energy transfer independently verified the NPF location. Furthermore, all bound NPFs partially occlude the actin-filament binding site, suggesting that additional local structural rearrangements are required in the pathway of Arp2/3 complex activation to allow branch formation.


Asunto(s)
Proteína 2 Relacionada con la Actina/química , Proteína 3 Relacionada con la Actina/química , Proteínas Fúngicas/química , Proteínas Protozoarias/química , Familia de Proteínas del Síndrome de Wiskott-Aldrich/química , Acanthamoeba , Sitios de Unión , Microscopía Electrónica , Modelos Moleculares , Conformación Proteica , Saccharomycetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA