RESUMEN
Detecting ferroelectricity at micro- and nanoscales is crucial for advanced nanomaterials and materials with complicated topography. Switching spectroscopy piezoresponse force microscopy (SSPFM), which involves measuring piezoelectric hysteresis loops via a scanning probe microscopy tip, is a widely accepted approach to characterize polarization reversal at the local scale and confirm ferroelectricity. However, the local hysteresis loops acquired through this method often exhibit unpredictable shapes, a phenomenon often attributed to the influence of parasitic factors such as electrostatic forces and current flow. Our research has uncovered that the deviation in hysteresis loop shapes can be caused by spontaneous backswitching occurring after polarization reversal. Moreover, we've determined that the extent of this effect can be exacerbated when employing inappropriate SSPFM waveform parameters, including duration, frequency, and AC voltage amplitude. Notably, the conventional 'pulse-mode' SSPFM method has been found to intensify spontaneous backswitching. In response to these challenges, we have redesigned SSPFM approach by introducing the positive up-negative down (PUND) method within the 'step-mode' SSPFM. This modification allows for effective probing of local piezoelectric hysteresis loops in ferroelectrics with reversible piezoresponse while removing undesirable electrostatic contribution. This advancement extends the applicability of the technique to a diverse range of ferroelectrics, including semiconductor ferroelectrics and relaxors, promising a more reliable and accurate characterization of their properties.
RESUMEN
Ferroelectric materials attract much attention for applications in resistive memory devices due to the large current difference between insulating and conductive states and the ability of carefully controlling electronic transport via the polarization set-up. Bismuth ferrite films are of special interest due to the combination of high spontaneous polarization and antiferromagnetism, implying the possibility to provide multiple physical mechanisms for data storage and operations. Macroscopic conductivity measurements are often hampered to unambiguously characterize the electric transport, because of the strong influence of the diverse material microstructure. Here, we studied the electronic transport and resistive switching phenomena in polycrystalline bismuth ferrite using advanced conductive atomic force microscopy (CAFM) at different temperatures and electric fields. The new approach to the CAFM spectroscopy and corresponding data analysis are proposed, which allow deep insight into the material band structure at high lateral resolution. Contrary to many studies via macroscopic methods, postulating electromigration of the oxygen vacancies, we demonstrate resistive switching in bismuth ferrite to be caused by the pure electronic processes of trapping/releasing electrons and injection of the electrons by the scanning probe microscopy tip. The electronic transport was shown to be comprehensively described by the combination of the space charge limited current model, while a Schottky barrier at the interface is less important due to the presence of the built-in subsurface charge.
RESUMEN
Scientific advancement is universally based on the dynamic interplay between theoretical insights, modeling, and experimental discoveries. However, this feedback loop is often slow, including delayed community interactions and the gradual integration of experimental data into theoretical frameworks. This challenge is particularly exacerbated in domains dealing with high-dimensional object spaces, such as molecules and complex microstructures. Hence, the integration of theory within automated and autonomous experimental setups, or theory in the loop-automated experiment, is emerging as a crucial objective for accelerating scientific research. The critical aspect is to use not only theory but also on-the-fly theory updates during the experiment. Here, we introduce a method for integrating theory into the loop through Bayesian conavigation of theoretical model space and experimentation. Our approach leverages the concurrent development of surrogate models for both simulation and experimental domains at the rates determined by latencies and costs of experiments and computation, alongside the adjustment of control parameters within theoretical models to minimize epistemic uncertainty over the experimental object spaces. This methodology facilitates the creation of digital twins of material structures, encompassing both the surrogate model of behavior that includes the correlative part and the theoretical model itself. While being demonstrated here within the context of functional responses in ferroelectric materials, our approach holds promise for broader applications, such as the exploration of optical properties in nanoclusters, microstructure-dependent properties in complex materials, and properties of molecular systems.
RESUMEN
In this contribution, a correlative confocal Raman and scanning probe microscopy approach was implemented to find a relation between the composition, lithiation state, and functional electrochemical response in individual micro-scale particles of a LiMn2O4 spinel in a commercial Li battery cathode. Electrochemical strain microscopy (ESM) was implemented both at a low-frequency (3.5 kHz) and in a high-frequency range of excitation (above 400 kHz). It was shown that the high-frequency ESM has a significant cross-talk with topography due to a tip-sample electrostatic interaction, while the low-frequency ESM yields a response correlated with distributions of Li ions and electrochemically inactive phases revealed by the confocal Raman microscopy. Parasitic contributions into the electromechanical response from the local Joule heating and flexoelectric effect were considered as well and found to be negligible. It was concluded that the low-frequency ESM response directly corresponds to the confocal Raman microscopy data. The analysis implemented in this work is an important step towards the quantitative measurement of diffusion coefficients and ion concentration via strain-based scanning probe microscopy methods in a wide range of ionically active materials.