Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 305(7): R832-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23948772

RESUMEN

Skeletal muscles can be injured by lengthening contractions, when the muscles are stretched while activated. Lengthening contractions produce structural damage that leads to the degeneration and regeneration of damaged muscle fibers by mechanisms that have not been fully elucidated. Reactive oxygen species (ROS) generated at the time of injury may initiate degenerative or regenerative processes. In the present study we hypothesized that lengthening contractions that damage the muscle would generate more ROS than isometric contractions that do not cause damage. To test our hypothesis, we subjected muscles of mice to lengthening contractions or isometric contractions and simultaneously monitored intracellular ROS generation with the fluorescent indicator 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (CM-DCFH), which is oxidized by ROS to form the fluorescent product CM-DCF. We found that CM-DCF fluorescence was not different during or shortly after lengthening contractions compared with isometric controls, regardless of the amount of stretch and damage that occurred during the lengthening contractions. The only exception was that after severe stretches, the increase in CM-DCF fluorescence was impaired. We conclude that lengthening contractions that damage the muscle do not generate more ROS than isometric contractions that do not cause damage. The implication is that ROS generated at the time of injury are not the initiating signals for subsequent degenerative or regenerative processes.


Asunto(s)
Contracción Isométrica , Músculo Esquelético/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología
2.
J Gerontol A Biol Sci Med Sci ; 73(12): 1581-1590, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29684112

RESUMEN

Myeloid cells play a critical role in regulating muscle degeneration and regeneration. Thus, alterations with aging in the myeloid cell response to muscle damage may affect the progression of the injury in old animals. We hypothesized that neutrophil levels remain elevated and that macrophage accumulation is reduced or delayed in injured muscles of old compared with young animals. Muscles of young and old mice were injured with lengthening contractions and analyzed 2 or 5 days later. Regardless of age, neutrophil (Gr-1+) and macrophage (CD68+) content increased dramatically by Day 2. Between 2 and 5 days, macrophages increased further, whereas neutrophils declined to a level that in old muscles was not different from uninjured controls. M2 macrophages (CD163+) also increased between 2 and 5 days, reaching higher levels in muscles of old mice than in young mice. Although no evidence of persisting neutrophils or reduced M2 accumulation in old muscle was found, total macrophage accumulation was lower in old mice. Furthermore, messenger RNA levels showed age-related changes in macrophage-associated genes that may indicate alterations in myeloid cell function. Overall, differences between muscles of old and young mice in the inflammatory response through the early stages of injury may contribute to defects in muscle regeneration.


Asunto(s)
Proliferación Celular/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/lesiones , Células Mieloides/citología , Heridas y Lesiones/patología , Factores de Edad , Análisis de Varianza , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Células Mieloides/fisiología , Neutrófilos/metabolismo , Distribución Aleatoria , Valores de Referencia
3.
Physiol Rep ; 4(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26733249

RESUMEN

P- and E-selectins are expressed on the surface of endothelial cells and may contribute to neutrophil recruitment following injurious lengthening contractions of skeletal muscle. Blunting neutrophil, but not macrophage, accumulation after lengthening contractions may provide a therapeutic benefit as neutrophils exacerbate damage to muscle fibers, while macrophages promote repair. In this study, we tested the hypothesis that P- and E-selectins contribute to neutrophil, but not macrophage, accumulation in muscles after contraction-induced injury, and that reducing neutrophil accumulation by blocking the selectins would be sufficient to reduce damage to muscle fibers. To test our hypothesis, we treated mice with antibodies to block P- and E-selectin function and assessed leukocyte accumulation and damage in muscles 2 days after lengthening contractions. Treatment with P/E-selectin blocking antibodies reduced neutrophil content by about half in muscles subjected to lengthening contractions. In spite of the reduction in neutrophil accumulation, we did not detect a decrease in damage 2 days after lengthening contractions. We conclude that P- and/or E-selectin contribute to the neutrophil accumulation associated with contraction-induced muscle damage and that only a portion of the neutrophils that typically accumulate following injurious lengthening contractions is sufficient to induce muscle fiber damage and force deficits. Thus, therapeutic interventions based on blocking the selectins or other adhesion proteins will have to reduce neutrophil numbers by more than 50% in order to provide a benefit.


Asunto(s)
Anticuerpos Bloqueadores/farmacología , Selectina E/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Neutrófilos/fisiología , Selectina-P/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/citología , Neutrófilos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Selectina-P/antagonistas & inhibidores
4.
Mol Ther Nucleic Acids ; 3: e160, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24781192

RESUMEN

Recent progress suggests gene therapy may one day be an option for treating some forms of limb girdle muscular dystrophy (LGMD). Nevertheless, approaches targeting LGMD have so far focused on gene replacement strategies for recessive forms of the disease. In contrast, no attempts have been made to develop molecular therapies for any of the eight dominantly inherited forms of LGMD. Importantly, the emergence of RNA interference (RNAi) therapeutics in the last decade provided new tools to combat dominantly inherited LGMDs with molecular therapy. In this study, we describe the first RNAi-based, preclinical gene therapy approach for silencing a gene associated with dominant LGMD. To do this, we developed adeno-associated viral vectors (AAV6) carrying designed therapeutic microRNAs targeting mutant myotilin (MYOT), which is the underlying cause of LGMD type 1A (LGMD1A). Our best MYOT-targeted microRNA vector (called miMYOT) significantly reduced mutant myotilin mRNA and soluble protein expression in muscles of LGMD1A mice (the TgT57I model) both 3 and 9 months after delivery, demonstrating short- and long-term silencing effects. This MYOT gene silencing subsequently decreased deposition of MYOT-seeded intramuscular protein aggregates, which is the hallmark feature of LGMD1A. Histological improvements were accompanied by significant functional correction, as miMYOT-treated animals showed increased muscle weight and improved specific force in the gastrocnemius, which is one of the most severely affected muscles in TgT57I mice and patients with dominant myotilin mutations. These promising results in a preclinical model of LGMD1A support the further development of RNAi-based molecular therapy as a prospective treatment for LGMD1A. Furthermore, this study sets a foundation that may be refined and adapted to treat other dominant LGMD and related disorders.

5.
J Clin Invest ; 124(11): 4693-708, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25250574

RESUMEN

Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.


Asunto(s)
Proteínas Musculares/genética , Miofibrillas/patología , Miopatías Nemalínicas/genética , Actinas/química , Animales , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Humanos , Masculino , Proteínas de Microfilamentos , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación Missense , Miofibrillas/metabolismo , Miopatías Nemalínicas/patología , Multimerización de Proteína , Pez Cebra
6.
J Vis Exp ; (77)2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23912162

RESUMEN

Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Larva , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA