Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008544

RESUMEN

Endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like protein 1 (EDEM1) is a quality control factor directly involved in the endoplasmic reticulum-associated degradation (ERAD) process. It recognizes terminally misfolded proteins and directs them to retrotranslocation which is followed by proteasomal degradation in the cytosol. The amyloid-ß precursor protein (APP) is synthesized and N-glycosylated in the ER and transported to the Golgi for maturation before being delivered to the cell surface. The amyloidogenic cleavage pathway of APP leads to production of amyloid-ß (Aß), deposited in the brains of Alzheimer's disease (AD) patients. Here, using biochemical methods applied to human embryonic kidney, HEK293, and SH-SY5Y neuroblastoma cells, we show that EDEM1 is an important regulatory factor involved in APP metabolism. We find that APP cellular levels are significantly reduced after EDEM1 overproduction and are increased in cells with downregulated EDEM1. We also report on EDEM1-dependent transport of APP from the ER to the cytosol that leads to proteasomal degradation of APP. EDEM1 directly interacts with APP. Furthermore, overproduction of EDEM1 results in decreased Aß40 and Aß42 secretion. These findings indicate that EDEM1 is a novel regulator of APP metabolism through ERAD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo , Línea Celular , Línea Celular Tumoral , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Glicosilación , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Pliegue de Proteína , alfa-Manosidasa/metabolismo
2.
Int J Mol Sci ; 20(6)2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875878

RESUMEN

Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Toxinas Biológicas/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Pliegue de Proteína , Transporte de Proteínas , Ubiquitinación
3.
Eur J Nutr ; 55(3): 1165-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26014809

RESUMEN

PURPOSE: Tamoxifen has been used for the treatment of estrogen receptor (ER)-positive breast cancers and in women who are at an increased risk of breast cancer. Acquired resistance to this drug and its toxicity still pose a clinically significant problem, especially in the prevention setting. Isothiocyanates present in cruciferous plants, such as sulforaphane or erucin, have been shown to reduce growth of breast cancer cells in vivo and in vitro. In this study, we explored their ability to sensitize cancer cells to 4-hydroxytamoxifen. METHODS: We used three ER-positive breast cancer cell lines, T47D, MCF-7 and BT-474, as well as the drug-resistant T47D and MCF-7 derivatives. We examined the effect of 4-hydroxytamoxifen, isothiocyanates and their combinations on cell viability by MTT and clonogenic assays. Impact of treatments on the levels of proteins engaged in apoptosis and autophagy was determined by Western blotting. RESULTS: Isothiocyanates act in a synergistic way with 4-hydroxytamoxifen, and co-treatment reduces breast cancer cell viability and clonogenic potential more effectively than treatment with any single agent. This is connected with a drop in the Bcl-2/Bax ratio and the level of survivin as well as increased PARP cleavage, and elevation in ADRP, the mitochondrial stress marker. Moreover, isothiocyanates sensitize 4-hydroxytamoxifen-resistant T47D and MCF-7 cells to the drug. CONCLUSION: Isothiocyanates enhance response to 4-hydroxytamoxifen, which allows for reduction of the effective drug concentration. Combinatorial strategy may hold promise in development of therapies and chemoprevention strategies against ER-positive breast tumors, even those with acquired resistance to the drug.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Isotiocianatos/farmacología , Receptores de Estrógenos/metabolismo , Tamoxifeno/análogos & derivados , Apoptosis/efectos de los fármacos , Brassicaceae/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Resistencia a Antineoplásicos , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Células MCF-7 , Perilipina-2/genética , Perilipina-2/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Sulfuros/farmacología , Sulfóxidos , Survivin , Tamoxifeno/farmacología , Tiocianatos/farmacología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
4.
BMC Cell Biol ; 16: 1, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25655076

RESUMEN

BACKGROUND: EDEM1 and EDEM2 are crucial regulators of the endoplasmic reticulum (ER)-associated degradation (ERAD) that extracts misfolded glycoproteins from the calnexin chaperone system. The degradation of ERAD substrates involves mannose trimming of N-linked glycans; however the precise mechanism of substrate recognition and sorting to the ERAD pathway is still poorly understood. It has previously been demonstrated that EDEM1 and EDEM2 binding does not require the trimming of substrate glycans or even ERAD substrate glycosylation, thus suggesting that both chaperones probably recognize misfolded regions of aberrant proteins. RESULTS: In this work, we focused on the substrate recognition by EDEM1 and EDEM2, asking whether hydrophobicity of protein determinants might be important for these interactions in human cells. In the study we used ricin, a protein toxin that utilizes the ERAD pathway in its retrotranslocation from the ER to the cytosol, and a model misfolded protein, the pancreatic isoform of human ß-secretase, BACE457. Mutations in the hydrophobic regions of these proteins allowed us to obtain mutated forms with increased and decreased hydrophobicity. CONCLUSIONS: Our data provide the first evidence that recognition of ERAD substrates by EDEM1 and EDEM2 might be determined by a sufficiently high hydrophobicity of protein determinants. Moreover, EDEM proteins can bind hydrophobic transmembrane regions of misfolded ERAD substrates. These data contribute to the general understanding of the regulation of ERAD in mammalian cells.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , alfa-Manosidasa/metabolismo , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Dicroismo Circular , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Mutagénesis , Unión Proteica , Desnaturalización Proteica , Estabilidad Proteica , Ricina/química , Ricina/genética , Ricina/metabolismo , Especificidad por Sustrato
5.
Biochem J ; 457(3): 485-96, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24200403

RESUMEN

EDEM1 [ER (endoplasmic reticulum)-degradation-enhancing α-mannosidase I-like protein 1] and EDEM2 are crucial regulators of ERAD (ER-associated degradation) that extracts non-native glycoproteins from the calnexin chaperone system. Ricin is a potent plant cytotoxin composed of an A-chain (RTA) connected by a disulfide bond to a cell-binding lectin B-chain (RTB). After endocytic uptake, the toxin is transported retrogradely to the ER, where the enzymatically active RTA is translocated to the cytosol in a similar manner as misfolded ER proteins. This transport is promoted by EDEM1. In the present study we report that EDEM2 is also involved in ricin retrotranslocation out of the ER. However, the role of EDEM1 and EDEM2 in ricin transport to the cytosol seems to differ. EDEM2 promotes ricin retrotranslocation irrespectively of ER translocon accessibility; moreover, co-immunoprecipitation and pull-down studies revealed that more ricin can interact with EDEM2 in comparison with EDEM1. On the other hand, interactions of both lectins with RTA are dependent on the structure of the RTA. Thus our data display a newly discovered role for EDEM2. Moreover, analysis of the involvement of EDEM1 and EDEM2 in ricin retrotranslocation to the cytosol may provide crucial information about general mechanisms of the recognition of ERAD substrates in the ER.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Ricina/toxicidad , Sustitución de Aminoácidos , Animales , Supervivencia Celular/efectos de los fármacos , Sustancias para la Guerra Química/química , Glicoproteínas , Células HEK293 , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Lectinas/biosíntesis , Lectinas/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/toxicidad , Inhibidores de Proteasoma/farmacología , Estabilidad Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/toxicidad , Transporte de Proteínas/efectos de los fármacos , Desplegamiento Proteico/efectos de los fármacos , Deficiencias en la Proteostasis/inducido químicamente , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Ricina/química , Ricina/genética , alfa-Manosidasa
6.
Molecules ; 20(6): 9816-46, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26023941

RESUMEN

Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , alfa-Manosidasa/metabolismo , Animales , Células Eucariotas/citología , Células Eucariotas/metabolismo , Glicoproteínas/genética , Humanos , Lectinas/química , Lectinas/genética , Proteínas de la Membrana/genética , Polisacáridos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Proteolisis , Transducción de Señal , Ubiquitinación , alfa-Manosidasa/genética
7.
Biochem J ; 436(2): 371-85, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21388347

RESUMEN

Ricin is a potent plant cytotoxin composed of an A-chain [RTA (ricin A-chain)] connected by a disulfide bond to a cell binding lectin B-chain [RTB (ricin B-chain)]. After endocytic uptake, the toxin is transported retrogradely to the ER (endoplasmic reticulum) from where enzymatically active RTA is translocated to the cytosol. This transport is promoted by the EDEM1 (ER degradation-enhancing α-mannosidase I-like protein 1), which is also responsible for directing aberrant proteins for ERAD (ER-associated protein degradation). RTA contains a 12-residue hydrophobic C-terminal region that becomes exposed after reduction of ricin in the ER. This region, especially Pro250, plays a crucial role in ricin cytotoxicity. In the present study, we introduced a point mutation [P250A (substitution of Pro250 with alanine)] in the hydrophobic region of RTA to study the intracellular transport of the modified toxin. The introduced mutation alters the secondary structure of RTA into a more helical structure. Mutation P250A increases endosomal-lysosomal degradation of the toxin, as well as reducing its transport from the ER to the cytosol. Transport of modified RTA to the cytosol, in contrast to wild-type RTA, appears to be EDEM1-independent. Importantly, the interaction between EDEM1 and RTA(P250A) is reduced. This is the first reported evidence that EDEM1 protein recognition might be determined by the structure of the ERAD substrate.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Plantas Tóxicas/toxicidad , Mutación Puntual/genética , Ricina/genética , Ricina/toxicidad , Animales , Chlorocebus aethiops , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Plantas Tóxicas/genética , Plantas Tóxicas/metabolismo , Pliegue de Proteína , Transporte de Proteínas/genética , Ricina/metabolismo , Especificidad por Sustrato , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Células Vero
8.
Med Sci Monit ; 17(4): CR196-202, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21455105

RESUMEN

BACKGROUND: Mucopolysaccharidoses (MPS) are inherited metabolic disorders caused by deficiencies in enzymes involved in degradation of glycosaminoglycans. MPS type III (Sanfilippo disease) is clinically characterized mainly by progressive and severe behavioral disturbances and cognitive dysfunction. Recent 1-year experimental treatment of 10 patients with a genistein (4', 5, 7-trihydroxyisoflavone)-rich extract resulted in improvement of tested parameters, including cognitive and behavioral functions. MATERIAL/METHODS: Eight pediatric patients with Sanfilippo disease were enrolled into the study. The modified version of the Brief Assessment Examination was used to assess cognitive functions. Moreover, 18 different parameters concerning changes in conditions of patients were assessed by their parents. RESULTS: During the first year of the treatment, an improvement of cognitive functions in 7 patients and stabilization in 1 patient were assessed, while after the third year (2-year follow-up) further improvement was observed in 2 patients, stabilization in 3 patients and some deterioration in 3 patients. Monitoring of general and behavioral symptoms revealed improvement in all patients after the first year of the treatment, further improvement in 5 patients, and deterioration in 3 patients during the next 2 years. CONCLUSIONS: We conclude that the treatment of Sanfilippo patients with a genistein-rich soy isoflavone extract (called gene expression-targeted isoflavone therapy [GET IT]) may be effective in either inhibition (in some patients) or slowing down (in other patients) of behavioral and cognitive problems over a longer period. An increased dose of genistein may improve the efficacy of the treatment.


Asunto(s)
Cognición/fisiología , Genisteína/uso terapéutico , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/fisiopatología , Fitoterapia , Extractos Vegetales/uso terapéutico , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Masculino , Padres
9.
Mol Genet Genomics ; 284(4): 289-305, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20700605

RESUMEN

Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ(70)-dependent (p1, pB, and p2) and two σ(S)-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models.


Asunto(s)
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Polinucleotido Adenililtransferasa/genética , Regiones Promotoras Genéticas/genética , Factor sigma/genética , Transcripción Genética , Secuencia de Bases , Huella de ADN , Cartilla de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli K12/enzimología , Datos de Secuencia Molecular , Plásmidos/genética , Pirofosfatasas/metabolismo
10.
Mol Biol Cell ; 17(4): 1664-75, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16452630

RESUMEN

The plant toxin ricin is transported retrogradely from the cell surface to the endoplasmic reticulum (ER) from where the enzymatically active part is retrotranslocated to the cytosol, presumably by the same mechanism as used by misfolded proteins. The ER degradation enhancing alpha-mannosidase I-like protein, EDEM, is responsible for directing aberrant proteins for ER-associated protein degradation. In this study, we have investigated whether EDEM is involved in ricin retrotranslocation. Overexpression of EDEM strongly protects against ricin. However, when the interaction between EDEM and misfolded proteins is inhibited by kifunensin, EDEM promotes retrotranslocation of ricin from the ER to the cytosol. Furthermore, puromycin, which inhibits synthesis and thereby transport of proteins into the ER, counteracted the protection seen in EDEM-transfected cells. Coimmunoprecipitation studies revealed that ricin can interact with EDEM and with Sec61alpha, and both kifunensin and puromycin increase these interactions. Importantly, vector-based RNA interference against EDEM, which leads to reduction of the cellular level of EDEM, decreased retrotranslocation of ricin A-chain to the cytosol. In conclusion, our results indicate that EDEM is involved in retrotranslocation of ricin from the ER to the cytosol.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Ricina/metabolismo , Alcaloides/farmacología , Animales , Células Cultivadas , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoprecipitación , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pliegue de Proteína , Transporte de Proteínas/genética , Puromicina/farmacología , Interferencia de ARN , Canales de Translocación SEC , Activación Transcripcional
11.
Toxins (Basel) ; 11(6)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216687

RESUMEN

Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.


Asunto(s)
Ricina/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Endocitosis , Humanos , Transporte de Proteínas
12.
Acta Biochim Pol ; 50(4): 941-5, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14739988

RESUMEN

The SeqA protein of Escherichia coli is not only the main negative regulator of DNA replication initiation but also a specific transcription factor. It binds to hemimethylated GATC sequences and, with somewhat different specificity, to fully methylated GATC regions. Recently, a microarray analysis was reported, in which transcriptomes of wild-type and DeltaseqA strains were compared. Although in the seqA mutant the levels of some transcripts were significantly decreased while certain transcripts were evidently more abundant relative to wild-type bacteria, no correlation between the presence of GATC motifs in promoter sequences and transcription activity was found. However, here we show that when larger DNA fragments, encompassing positions from -250 to +250 relative to the transcription start site, are analyzed, some common features of GATC distribution near the promoters activated by SeqA can be demonstrated. Nevertheless, it seems that the GATC pattern is not the only determinant of SeqA-dependence of promoter activity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/genética , Proteínas de Escherichia coli/metabolismo , Regiones Promotoras Genéticas/genética , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas/fisiología , Análisis de Secuencia de ADN
13.
Curr Pharm Biotechnol ; 12(11): 1860-5, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21902626

RESUMEN

Mucopolysaccharidoses (MPS) are inherited metabolic disorders, caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs) in lysosomes. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs, including the heart, respiratory system, bones, joints and central nervous system. Depending on the kind of deficient enzyme, 11 types and subtypes of MPS are currently recognized. Although enzyme replacement therapy has been developed for 3 types of MPS (types I, II and VI), this treatment was found to be effective only in management of somatic symptoms. Since all MPS types except IVA, IVB and VI are characterized by various problems with functioning of the central nervous system (CNS), a search for effective treatment of this system is highly desirable. Recent discoveries suggested that substrate reduction therapy may be an efficient method for treatment of MPS patients, including their CNS. In this review, different variants of this therapy will be discussed in the light of recently published reports.


Asunto(s)
Expresión Génica/efectos de los fármacos , Glicosaminoglicanos/antagonistas & inhibidores , Glicosaminoglicanos/biosíntesis , Lisosomas/metabolismo , Mucopolisacaridosis/terapia , Enfermedades Neurodegenerativas/terapia , Animales , Humanos , Isoflavonas/administración & dosificación , Isoflavonas/uso terapéutico , Lisosomas/enzimología , Lisosomas/genética , Mucopolisacaridosis/enzimología , Mucopolisacaridosis/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Rodaminas/administración & dosificación , Rodaminas/uso terapéutico , Especificidad por Sustrato
14.
Med Hypotheses ; 75(6): 605-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20732748

RESUMEN

Mucopolysaccharidoses (MPS) are inherited metabolic disorders from the group of lysosomal storage diseases (LSD). They arise from mutations causing dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs) in lysosomes. Impaired degradation of these compounds results in their accumulation in cells and dysfunction of most tissues and organs of patients. If heparan sulfate (HS) is the sole or one of stored GAGs, brain functions are also affected. However, despite the fact that products of incomplete degradation of the same chemical, HS, are accumulated in brains of patients suffering from Hurler disease (MPS type I), Hunter disease (MPS type II), Sanfilippo disease (MPS type III) and Sly disease (MPS type VII), and obvious deterioration of brain functions occur in these patients, their behavior is considerably different between various types of MPS. Here we asked the question about biochemical reasons of these differences. We performed theoretical analysis of products of incomplete HS degradation that accumulate in tissues of patients diagnosed for these diseases. A correlation between chemical structures of incompletely degraded HS and behaviors of patients suffering from particular MPS types was found. We propose a hypothesis that particular chemical moieties occurring at the ends of incompletely degraded HS molecules may determine characteristic behavioral disturbances, perhaps due to chemical reactions interfering with functions of neurons in the brain. A possible experimental testing of this hypothesis is also proposed. If the hypothesis is true, it might shed some new light on biochemical mechanisms of behavioral problems occurring not only in MPS but also in some other diseases.


Asunto(s)
Síntomas Conductuales/etiología , Encéfalo/metabolismo , Glicosaminoglicanos/metabolismo , Mucopolisacaridosis/complicaciones , Mucopolisacaridosis/fisiopatología , Síntomas Conductuales/metabolismo , Niño , Humanos , Mucopolisacaridosis/metabolismo , Neuronas/metabolismo
15.
PLoS One ; 3(8): e2984, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18714349

RESUMEN

BACKGROUND: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. CONCLUSION/SIGNIFICANCE: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart.


Asunto(s)
Escherichia coli K12/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Nucleótidos/genética , Respuesta SOS en Genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Letales , Proteínas de Choque Térmico/genética , Nucleótidos/biosíntesis , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Mensajero/genética , Termodinámica , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA