Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Environ Microbiol ; 88(1): e0178221, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34669435

RESUMEN

Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.


Asunto(s)
Micorrizas , Bosques , Micorrizas/genética , Nitrógeno , Suelo , Microbiología del Suelo , Árboles
2.
Oecologia ; 186(3): 731-741, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29243085

RESUMEN

Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.


Asunto(s)
Micorrizas , Carbono , Bosques , Humanos , Raíces de Plantas , Síndrome , Árboles
3.
New Phytol ; 205(2): 731-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25441303

RESUMEN

Few studies describe root distributions at the species level in diverse forests, although belowground species interactions and traits are often assumed to affect fine-root biomass (FRB). We used molecular barcoding to study how FRB of trees relates to soil characteristics, species identity, root diversity, and root traits, and how these relationships are affected by proximity to ecotones in a temperate forest landscape. We found that soil patch root biomass increased in response to soil resources across all species, and there was little belowground vertical or horizontal spatial segregation among species. Root traits and species relative abundance did not explain significant variation in FRB after correcting for soil fertility. A positive relationship between phylogenetic diversity and FRB indicated significant belowground overyielding attributable to local root diversity. Finally, variation in FRB explained by soil fertility and diversity was reduced near ecotones, but only because of a reduction in biomass in periodically anoxic areas. These results suggest that symmetric responses to soil properties are coupled with complementary species traits and interactions to explain variation in FRB among soil patches. In addition, landscape-level dispersal among habitats and across ecotones helps explain variation in the strength of these relationships in complex landscapes.


Asunto(s)
Bosques , Raíces de Plantas/fisiología , Árboles/fisiología , Biomasa , Ecosistema , Ohio , Suelo , Especificidad de la Especie
4.
BMC Microbiol ; 13: 78, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23574744

RESUMEN

BACKGROUND: Human activities have greatly increased nitrogen (N) levels in natural habitats through atmospheric N deposition and nutrient leaching, which can have large effects on N cycling and other ecosystem processes. Because of the significant role microorganisms play in N cycling, high inputs of nitrogenous compounds, such as nitrate (NO3-), into natural ecosystems could have cascading effects on microbial community structure and the metabolic processes that microbes perform. To investigate the multiple effects of NO3- pollution on microbial communities, we created two shotgun metagenomes from vernal pool microcosms that were either enriched with a solution of 10 mg NO3--N (+NO3-) or received distilled water as a control (-N). RESULTS: After only 20 hours of exposure to NO3-, the initial microbial community had shifted toward one containing a higher proportional abundance of stress tolerance and fermentation environmental gene tags (EGTs). Surprisingly, we found no changes to N metabolism EGTs, even though large shifts in denitrification rates were seen between the +NO3- and -N microcosms. Thus, in the absence of NO3- addition, it is plausible that the microbes used other respiratory pathways for energy. Respiratory pathways involving iron may have been particularly important in our -N microcosms, since iron acquisition EGTs were proportionally higher in the -N metagenome. Additionally, we noted a proportional increase in Acidobacteria and Alphaproteobacteria EGTs in response to NO3- addition. These community shifts in were not evident with TRFLP, suggesting that metagenomic analyses may detect fine-scale changes not possible with community profiling techniques. CONCLUSIONS: Our results suggest that the vernal pool microbial communities profiled here may rely on their metabolic plasticity for growth and survival when certain resources are limiting. The creation of these metagenomes also highlights how little is known about the effects of NO3- pollution on microbial communities, and the relationship between community stability and function in response to disturbance.


Asunto(s)
Metagenómica/métodos , Nitratos/análisis , Ecosistema , Nitrógeno/análisis , Microbiología del Suelo
5.
Environ Sci Technol ; 47(15): 8273-9, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23822884

RESUMEN

Peatlands are an important source of the atmospheric greenhouse gas methane (CH4). Although CH4 cycling and fluxes have been quantified for many northern peatlands, imprecision in process-based approaches to predicting CH4 emissions suggests that our understanding of underlying processes is incomplete. Microbial anaerobic oxidation of CH4 (AOM) is an important CH4 sink in marine sediments, but AOM has only recently been identified in a few nonmarine systems. We used (13)C isotope tracers and followed the fate of (13)C into CO2 and peat in order to study the geographic extent, relative importance, and biogeochemistry of AOM in 15 North American peatlands spanning a ∼1500 km latitudinal transect that varied in hydrology, vegetation, and soil chemistry. For the first time, we demonstrate that AOM is a widespread and quantitatively important process across many peatland types and that anabolic microbial assimilation of CH4-C occurs. However, AOM rate is not predicted by CH4 production rates and the primary mechanism of C assimilation remains uncertain. AOM rates are higher in fen than bog sites, suggesting electron acceptor constraints on AOM. Nevertheless, AOM rates were not correlated with porewater ion concentrations or stimulated following additions of nitrate, sulfate, or ferric iron, suggesting that an unidentified electron acceptor(s) must drive AOM in peatlands. Globally, we estimate that AOM could consume a large proportion of CH4 produced annually (1.6-49 Tg) and thereby constrain emissions and greenhouse gas forcing.


Asunto(s)
Isótopos/metabolismo , Metano/metabolismo , Anaerobiosis , Oxidación-Reducción
6.
Microb Ecol ; 63(2): 438-45, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21728037

RESUMEN

The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and (13)C-DNA stable-isotope probing (SIP) to measure methane (CH(4)) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH(4) oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated (13)C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH(4) oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating (13)C in 16S rDNA; however, its phylogenetic similarity to other CO(2)-utilizing archaea probably indicates that this organism is not directly involved in CH(4) oxidation in peat.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Metano/metabolismo , Microbiología del Suelo , Suelo/química , Alphaproteobacteria/aislamiento & purificación , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , ADN Bacteriano/análisis , ADN Bacteriano/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Ecosistema , Gammaproteobacteria/aislamiento & purificación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , New York , Oxidación-Reducción , Oxigenasas/análisis , Oxigenasas/genética , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Humedales
7.
Appl Environ Microbiol ; 75(24): 7639-48, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19854915

RESUMEN

Although the level of diversity of root-associated fungi can be quite high, the effect of plant distribution and soil environment on root-associated fungal communities at fine spatial scales has received little attention. Here, we examine how soil environment and plant distribution affect the occurrence, diversity, and community structure of root-associated fungi at local patch scales within a mature forest. We used terminal restriction fragment length polymorphism and sequence analysis to detect 63 fungal species representing 28 different genera colonizing tree root tips. At least 32 species matched previously identified mycorrhizal fungi, with the remaining fungi including both saprotrophic and parasitic species. Root fungal communities were significantly different between June and September, suggesting a rapid temporal change in root fungal communities. Plant distribution affected root fungal communities, with some root fungi positively correlated with tree diameter and herbaceous-plant coverage. Some aspects of the soil environment were correlated with root fungal community structure, with the abundance of some root fungi positively correlated with soil pH and moisture content in June and with soil phosphorous (P) in September. Fungal distribution and community structure may be governed by plant-soil interactions at fine spatial scales within a mature forest. Soil P may play a role in structuring root fungal communities at certain times of the year.


Asunto(s)
Acer/microbiología , Fagus/microbiología , Hongos/clasificación , Micorrizas/clasificación , Microbiología del Suelo , Biodiversidad , ADN de Hongos/genética , Ecosistema , Hongos/genética , Micorrizas/genética , Ohio , Raíces de Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Árboles/microbiología
8.
Water Res ; 144: 332-340, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053624

RESUMEN

Anaerobic oxidation of methane (AOM) is a microbial process that consumes dissolved methane (CH4) in anoxic sediments and soils and mitigates CH4 release to the atmosphere. The degree to which AOM limits global biospheric CH4 emissions is not fully understood. In marine sediments, where the process was first described, AOM is responsible for oxidizing >90% of the CH4 produced. More recently, AOM has been observed in soils, peatlands, and freshwater ecosystems. In lakes, where sediment anoxia, organic carbon turnover, and CH4 production are common, AOM is not well studied but could represent a significant CH4 sink and constraint on emissions. Here, we present evidence for the occurrence of AOM in the sediment of thirteen lakes that span a global climatic and trophic gradient. We further quantified and modeled AOM patterns and studied potential microbial controls of AOM using laboratory incubations of sediment and stable isotope measurements in three of the thirteen lakes. We demonstrate that AOM is widespread in freshwater lake sediments and accounts for 29%-34% (95% confidence interval) of the mean total CH4 produced in surface and near-surface lake sediments.


Asunto(s)
Sedimentos Geológicos , Lagos , Metano/metabolismo , Alaska , Anaerobiosis , Ecosistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Alemania , Lagos/química , Lagos/microbiología , Metano/química , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Oxidación-Reducción
9.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26850158

RESUMEN

Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.


Asunto(s)
Hongos/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Fósforo/análisis , Microbiología del Suelo , Árboles/microbiología , Biomasa , Ecosistema , Bosques , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Concentración de Iones de Hidrógeno , Micorrizas/genética , Micorrizas/aislamiento & purificación , Micorrizas/metabolismo , Fósforo/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Árboles/crecimiento & desarrollo
10.
FEMS Microbiol Ecol ; 81(3): 660-72, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22530997

RESUMEN

Forest vernal pools experience strong environmental fluctuations, such as changes in water chemistry, which are often correlated with changes in microbial community structure. However, very little is known about the extent to which these community changes influence ecosystem processes in vernal pools. This study utilized experimental vernal pool microcosms to simulate persistent pH alteration and a pulse input of nitrate (NO3 -), which are common perturbations to temperate vernal pool ecosystems. pH was manipulated at the onset and microbial respiration was monitored throughout the study (122 days). On day 29, NO3 - was added and denitrification rate was measured and bacterial, fungal, and denitrifier communities were profiled on day 30 and day 31. Microbial respiration and both bacterial and fungal community structure were altered by the pH treatment, demonstrating both structural and functional microbial responses. The NO3 - pulse increased denitrification rate without associated changes in community structure, suggesting that microbial communities responded functionally without structural shifts. The functioning of natural vernal pools, which experience both persistent and short-term environmental change, may thus depend on the type and duration of the change or disturbance.


Asunto(s)
Bacterias/clasificación , Ecosistema , Agua Dulce/microbiología , Hongos/clasificación , Nitratos/metabolismo , Microbiología del Suelo , Bacterias/aislamiento & purificación , Desnitrificación , Agua Dulce/química , Hongos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hojas de la Planta/microbiología , Estaciones del Año , Suelo/química , Árboles
11.
Front Microbiol ; 3: 70, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22393328

RESUMEN

Northern peatlands are a large repository of atmospheric carbon due to an imbalance between primary production by plants and microbial decomposition. The James Bay Lowlands (JBL) of northern Ontario are a large peatland-complex but remain relatively unstudied. Climate change models predict the region will experience warmer and drier conditions, potentially altering plant community composition, and shifting the region from a long-term carbon sink to a source. We collected a peat core from two geographically separated (ca. 200 km) ombrotrophic peatlands (Victor and Kinoje Bogs) and one minerotrophic peatland (Victor Fen) located near Victor Bog within the JBL. We characterized (i) archaeal, bacterial, and fungal community structure with terminal restriction fragment length polymorphism of ribosomal DNA, (ii) estimated microbial activity using community level physiological profiling and extracellular enzymes activities, and (iii) the aeration and temperature dependence of carbon mineralization at three depths (0-10, 50-60, and 100-110 cm) from each site. Similar dominant microbial taxa were observed at all three peatlands despite differences in nutrient content and substrate quality. In contrast, we observed differences in basal respiration, enzyme activity, and the magnitude of substrate utilization, which were all generally higher at Victor Fen and similar between the two bogs. However, there was no preferential mineralization of carbon substrates between the bogs and fens. Microbial community composition did not correlate with measures of microbial activity but pH was a strong predictor of activity across all sites and depths. Increased peat temperature and aeration stimulated CO(2) production but this did not correlate with a change in enzyme activities. Potential microbial activity in the JBL appears to be influenced by the quality of the peat substrate and the presence of microbial inhibitors, which suggests the existing peat substrate will have a large influence on future JBL carbon dynamics.

12.
PLoS One ; 7(11): e48946, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145035

RESUMEN

Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e.,

Asunto(s)
Ecosistema , Micorrizas/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Árboles/metabolismo , Árboles/microbiología , Biomasa , Concentración de Iones de Hidrógeno , Ohio , Suelo , Microbiología del Suelo
13.
Oecologia ; 157(2): 295-305, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18493798

RESUMEN

While recent research has focused on the effects of exotic plant species on ecosystem properties, less is known about how restoring individual native plant species, differing in biomass and tissue chemistry, may impact ecosystems. We examined how three native C(4) prairie grasses affected soil C and N cycling 11 years after reintroduction into successional old-field communities dominated by non-native C(3) grasses. The species examined in this study differ in traits that are expected to influence soil C and N cycling (biomass and tissue chemistry). Thus, we hypothesized that cycling rates would decrease, thereby increasing pool sizes in soils under C(4) species compared under C(3) species. As predicted, the C(4) species had greater biomass and more recalcitrant tissue [higher C:N, acid detergent fiber (ADF):N] compared to the dominant C(3) species. The three C(4) species did not differ in tissue C:N, ADF:N, or root biomass, but Andropogon had more than twice the shoot biomass of Schizachyrium and Sorghastrum. Soils under the C(4) species did not differ in inorganic N levels, but levels were lower than in soils under the C(3) species, and soils under Andropogon had slightly lower in situ net N mineralization rates compared to those under C(3) species. We found little evidence of larger surface soil C pools under C(4) species versus C(3) species after 11 years and no differences in subsurface soil C or N among species. The C(4) species contributed a significant amount of C to both soil depths after 11 years. Our results demonstrate that C(4) species reintroduction into old-fields can alter C and N cycling on relatively short timescales, and that individual C(4) species differ in the magnitude of these effects. Improving our understanding of how species influence ecosystem properties is essential to predicting the ecosystem-level consequences of plant community alterations due to land use changes, global change, and species introductions.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Suelo , Biomasa , Ecosistema , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Poaceae/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA