Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35383362

RESUMEN

Nuclear receptors (NRs) are important biological targets of endocrine-disrupting chemicals (EDCs). Identifying chemicals that can act as EDCs and modulate the function of NRs is difficult because of the time and cost of in vitro and in vivo screening to determine the potential hazards of the 100 000s of chemicals that humans are exposed to. Hence, there is a need for computational approaches to prioritize chemicals for biological testing. Machine learning (ML) techniques are alternative methods that can quickly screen millions of chemicals and identify those that may be an EDC. Computational models of chemical binding to multiple NRs have begun to emerge. Recently, a Nuclear Receptor Activity (NuRA) dataset, describing experimentally derived small-molecule activity against various NRs has been created. We have used the NuRA dataset to develop an ensemble of ML-based models to predict the agonism, antagonism, binding and effector binding of small molecules to nine different human NRs. We defined the applicability domain of the ML models as a measure of Tanimoto similarity to the molecules in the training set, which enhanced the performance of the developed classifiers. We further developed a user-friendly web server named 'NR-ToxPred' to predict the binding of chemicals to the nine NRs using the best-performing models for each receptor. This web server is freely accessible at http://nr-toxpred.cchem.berkeley.edu. Users can upload individual chemicals using Simplified Molecular-Input Line-Entry System, CAS numbers or sketch the molecule in the provided space to predict the compound's activity against the different NRs and predict the binding mode for each.


Asunto(s)
Disruptores Endocrinos , Receptores Citoplasmáticos y Nucleares , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo , Humanos , Aprendizaje Automático , Receptores Citoplasmáticos y Nucleares/genética
2.
Environ Sci Technol ; 58(10): 4487-4499, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422483

RESUMEN

Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Humanos , Receptores Citoplasmáticos y Nucleares , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo
3.
Environ Res ; 220: 115188, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592815

RESUMEN

BACKGROUND: The ability to induce chronic inflammation and immunosuppression are two key characteristics of carcinogens and important forms of immunotoxicity. The National Toxicology Program (NTP) evaluated the immunotoxicity of two per- and polyfluoroalkyl substances (PFASs), PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate), in 2016. However, the potential pro-inflammatory and immunosuppressive effects of other PFASs remain largely uncharacterized. METHODS: We developed an expanded set of search terms pertaining to the chronic inflammatory and immunosuppressive effects of PFASs based on those of the International Agency for Research on Cancer (IARC) and NTP. To confirm searching effectiveness and scope, we compared our search term results with those of IARC and NTP for both PFASs and two other known carcinogens, chromium (VI) and benzene. Systematic evidence maps (SEMs) were also produced using Tableau to visualize the distribution of study numbers and types reporting immunotoxic effects and specific biomarkers elicited by PFAS exposures. RESULTS: In total, 1155 PFAS studies were retrieved, of which 321 qualified for inclusion in our dataset. Using our search terms, we identified a greater number of relevant studies than those obtained using IARC and NTP's search terms. From the SEM findings, increased cytokine production strengthened an association between PFAS exposure and chronic inflammation, and decreased B-cell activation and altered levels of T-cell subtypes and immunoglobulins confirmed PFAS-induced immunosuppression. CONCLUSION: Our SEM findings confirm that several PFASs commonly found in both in the environment, including those that are lesser-known, may induce immunosuppression and chronic inflammation, two key characteristics of carcinogens. This approach, including development of search terms, study screening process, data coding, and evidence mapping visualizations, can be applied to other key characteristics of chemical carcinogens.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Carcinógenos , Terapia de Inmunosupresión
4.
Environ Res ; 217: 114832, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403651

RESUMEN

Due to their persistence and toxicity, perfluoroalkyl and polyfluoroalkyl substances (PFASs) constitute significant hazards to human health and the environment. Their effects include immune suppression, altered hormone levels, and osteoporosis. Recently, the most studied PFAS, perfluorooctanoic acid (PFOA), was shown to competitively binding to the Vitamin D receptor (VDR). VDR plays a crucial role in regulating genes involved in maintaining immune, endocrine, and calcium homeostasis, suggesting it may be a target for at least some of the health effects of PFAS. Hence, this study examined the potential binding of 5206 PFASs to VDR using molecular docking, molecular dynamics, and free energy binding calculations. We identified 14 PFAS that are predicted to interact strongly with VDR, similar to the natural ligands. We further investigated the interactions of VDR with 256 PFASs of established commercial importance. Eighty-three (32%) of these 256 commercially important PFAS were predicted to be stronger binders to VDR than PFOA. At least 16 PFASs of regulatory importance, because they have been identified in water supplies and human blood samples, were also more potent binders to VDR than PFOA. Further, PFASs are usually found together in contaminated drinking water and human blood samples, which raises the concern that multiple PFASs may act together as a mixture on VDR function, potentially producing harmful effects on the immune, endocrine, and bone homeostasis.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Simulación del Acoplamiento Molecular , Receptores de Calcitriol , Fluorocarburos/toxicidad , Caprilatos/toxicidad
5.
Hepatology ; 74(6): 3486-3496, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34105804

RESUMEN

Hazard identification regarding adverse effects on the liver is a critical step in safety evaluations of drugs and other chemicals. Current testing paradigms for hepatotoxicity rely heavily on preclinical studies in animals and human data (epidemiology and clinical trials). Mechanistic understanding of the molecular and cellular pathways that may cause or exacerbate hepatotoxicity is well advanced and holds promise for identification of hepatotoxicants. One of the challenges in translating mechanistic evidence into robust decisions about potential hepatotoxicity is the lack of a systematic approach to integrate these data to help identify liver toxicity hazards. Recently, marked improvements were achieved in the practice of hazard identification of carcinogens, female and male reproductive toxicants, and endocrine disrupting chemicals using the key characteristics approach. Here, we describe the methods by which key characteristics of human hepatotoxicants were identified and provide examples for how they could be used to systematically identify, organize, and use mechanistic data when identifying hepatotoxicants.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología
6.
Occup Environ Med ; 79(10): 717-720, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35504721

RESUMEN

OBJECTIVES: There has been concern over the possible risk of autoimmune diseases from exposure to trichloroethylene (TCE), an industrial solvent and common pollutant near hazardous waste sites. Studies of TCE-exposed lupus-prone mouse strains have reported increases in serum antinuclear antibodies (ANAs), a marker of autoimmunity, and autoimmune pathologic changes, while epidemiologic studies have provided limited support for an association between TCE exposure and scleroderma. To investigate exposure-related biologic evidence of autoimmunity in humans, we measured ANA levels in sera from a cross-sectional study of TCE-exposed (n=80) and TCE-unexposed (n=96) workers in Guangdong, China. METHODS: Full-shift personal air exposure measurements for TCE were taken prior to blood collection. Serum ANAs were detected by immunofluorescence on HEp-2 cells. We calculated ORs and 95% CI relating levels of TCE exposure (categorised using tertiles as cut-points) and ANA positivity (1+ intensity at 1:320 dilution) using multivariable logistic regression. RESULTS: Samples from 16 of 176 participants were ANA-positive. We found higher levels of TCE exposure (concentrations>17.27 ppm) to be associated with an elevated odds of ANA positivity (OR 4.7, 95% CI 1.3 to 16.8) compared with unexposed controls. This association remained after excluding two subjects with diagnosed autoimmune disease (OR 4.5, 95% CI 1.2 to 16.2). We did not observe an association with ANAs at lower exposure levels. CONCLUSIONS: Our findings, to our knowledge the first direct human evidence of an association between TCE exposure and systemic autoimmunity, provide biologic plausibility to epidemiologic evidence relating TCE and autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Productos Biológicos , Exposición Profesional , Tricloroetileno , Animales , Anticuerpos Antinucleares , Enfermedades Autoinmunes/inducido químicamente , Enfermedades Autoinmunes/epidemiología , Estudios Transversales , Humanos , Ratones , Exposición Profesional/efectos adversos , Tricloroetileno/efectos adversos
7.
Platelets ; 33(3): 451-461, 2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348571

RESUMEN

Kv1.3 is a voltage-gated K+-selective channel with roles in immunity, insulin-sensitivity, neuronal excitability and olfaction. Despite being one of the largest ionic conductances of the platelet surface membrane, its contribution to platelet function is poorly understood. Here we show that Kv1.3-deficient platelets display enhanced ADP-evoked platelet aggregation and secretion, and an increased surface expression of platelet integrin αIIb. In contrast, platelet adhesion and thrombus formation in vitro under arterial shear conditions on surfaces coated with collagen were reduced for samples from Kv1.3-/- compared to wild type mice. Use of collagen-mimetic peptides revealed a specific defect in the engagement with α2ß1. Kv1.3-/- platelets developed significantly fewer, and shorter, filopodia than wild type platelets during adhesion to collagen fibrils. Kv1.3-/- mice displayed no significant difference in thrombus formation within cremaster muscle arterioles using a laser-induced injury model, thus other pro-thrombotic pathways compensate in vivo for the adhesion defect observed in vitro. This may include the increased platelet counts of Kv1.3-/- mice, due in part to a prolonged lifespan. The ability of Kv1.3 to modulate integrin-dependent platelet adhesion has important implications for understanding its contribution to normal physiological platelet function in addition to its reported roles in auto-immune diseases and thromboinflammatory models of stroke.


Asunto(s)
Plaquetas/metabolismo , Colágeno/metabolismo , Integrina alfa2beta1/metabolismo , Adhesividad Plaquetaria/fisiología , Agregación Plaquetaria/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Humanos
8.
Rev Panam Salud Publica ; 46: e41, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677216

RESUMEN

Objectives: To estimate inequalities in demand for family planning satisfied with modern methods among women in Latin America and the Caribbean, with an emphasis on Brazil and Mexico, and to calculate the scenario for recovery of modern contraceptive coverage by expanding access to long-acting contraceptives (LARC) after the COVID-19 pandemic. Methods: National health surveys from 2006 to 2018 were used to estimate the demand for family planning satisfied with modern methods and how it was affected by the COVID-19 pandemic. The scenario included three variables: coverage, health outcomes, and costs. Considering coverage, United Nations Population Fund data were used to estimate the impact of COVID-19 on access to contraception in Latin America and the Caribbean. Health outcomes were assessed with the Impact 2 tool. Direct investment was used to evaluate cost-effectiveness. Results: Substantial inequalities were found in the use of modern contraceptive methods before the pandemic. We showed the potential cost-effectiveness of avoiding maternal deaths by introducing LARCs. Conclusions: In the scenario predicted for Brazil and Mexico, the costs of modern family planning and averted disability-adjusted life years are modest. Governments in Latin America and the Caribbean should consider promoting LARCs as a highly efficient and cost-effective intervention.

9.
Carcinogenesis ; 42(11): 1326-1336, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34606590

RESUMEN

Benzene is a recognized hematotoxin and leukemogen; however, its mechanism of action in humans remain unclear. To provide insight into the processes underlying benzene hematotoxicity, we performed high-resolution metabolomic profiling of plasma collected from a cross-sectional study of 33 healthy workers exposed to benzene (median 8-h time-weighted average exposure; 20 ppma), and 25 unexposed controls in Shanghai, China. Metabolic features associated with benzene were identified using a metabolome-wide association study (MWAS) that tested for the relationship between feature intensity and benzene exposure. MWAS identified 478 mass spectral features associated with benzene exposure at false discovery rate < 20%. Comparison to a list of 13 known benzene metabolites and metabolites predicted using a multi-component biotransformation algorithm showed five metabolites were detected, which included the known metabolites phenol and benzene diolepoxide. Metabolic pathway enrichment identified 41 pathways associated with benzene exposure, with altered pathways including carnitine shuttle, fatty acid metabolism, sulfur amino acid metabolism, glycolysis, gluconeogenesis and branched chain amino acid metabolism. These results suggest disruption to fatty acid uptake, energy metabolism and increased oxidative stress, and point towards pathways related to mitochondrial dysfunction, which has previously been linked to benzene exposure in animal models and human studies. Taken together, these results suggest benzene exposure is associated with disruption of mitochondrial pathways, and provide promising, systems biology biomarkers for risk assessment of benzene-induced hematotoxicity in humans.


Asunto(s)
Benceno/toxicidad , Células Madre Hematopoyéticas/efectos de los fármacos , Metaboloma , Exposición Profesional , Adulto , Biomarcadores/metabolismo , China , Aberraciones Cromosómicas , Estudios Transversales , Femenino , Humanos , Masculino , Metabolómica/métodos , Mutágenos/toxicidad
10.
Environ Health ; 20(1): 79, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243768

RESUMEN

BACKGROUND: Arsenic (As) exposure through drinking water is a global public health concern. Epigenetic dysregulation including changes in DNA methylation (DNAm), may be involved in arsenic toxicity. Epigenome-wide association studies (EWAS) of arsenic exposure have been restricted to single populations and comparison across EWAS has been limited by methodological differences. Leveraging data from epidemiological studies conducted in Chile and Bangladesh, we use a harmonized data processing and analysis pipeline and meta-analysis to combine results from four EWAS. METHODS: DNAm was measured among adults in Chile with and without prenatal and early-life As exposure in PBMCs and buccal cells (N = 40, 850K array) and among men in Bangladesh with high and low As exposure in PBMCs (N = 32, 850K array; N = 48, 450K array). Linear models were used to identify differentially methylated positions (DMPs) and differentially variable positions (DVPs) adjusting for age, smoking, cell type, and sex in the Chile cohort. Probes common across EWAS were meta-analyzed using METAL, and differentially methylated and variable regions (DMRs and DVRs, respectively) were identified using comb-p. KEGG pathway analysis was used to understand biological functions of DMPs and DVPs. RESULTS: In a meta-analysis restricted to PBMCs, we identified one DMP and 23 DVPs associated with arsenic exposure; including buccal cells, we identified 3 DMPs and 19 DVPs (FDR < 0.05). Using meta-analyzed results, we identified 11 DMRs and 11 DVRs in PBMC samples, and 16 DMRs and 19 DVRs in PBMC and buccal cell samples. One region annotated to LRRC27 was identified as a DMR and DVR. Arsenic-associated KEGG pathways included lysosome, autophagy, and mTOR signaling, AMPK signaling, and one carbon pool by folate. CONCLUSIONS: Using a two-step process of (1) harmonized data processing and analysis and (2) meta-analysis, we leverage four DNAm datasets from two continents of individuals exposed to high levels of As prenatally and during adulthood to identify DMPs and DVPs associated with arsenic exposure. Our approach suggests that standardizing analytical pipelines can aid in identifying biological meaningful signals.


Asunto(s)
Arsénico/efectos adversos , Metilación de ADN/efectos de los fármacos , Leucocitos/metabolismo , Mucosa Bucal/citología , Efectos Tardíos de la Exposición Prenatal/genética , Contaminantes Químicos del Agua/efectos adversos , Adulto , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología
11.
Platelets ; 32(7): 872-879, 2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33872124

RESUMEN

Potassium ions have widespread roles in cellular homeostasis and activation as a consequence of their large outward concentration gradient across the surface membrane and ability to rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in the platelet, although they remain to be demonstrated using electrophysiological techniques. Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their precursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit an increased platelet count, which may result from an increased splenic megakaryocyte development and longer platelet lifespan. This review discusses the evidence in the literature that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. Putative roles for other K+ channels and known accessory proteins which to date have only been detected in transcriptomic or proteomic studies, are also discussed.


Asunto(s)
Plaquetas/metabolismo , Canales de Potasio/metabolismo , Animales , Humanos , Ratones
12.
Am J Physiol Endocrinol Metab ; 318(5): E667-E677, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045263

RESUMEN

The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human epidemiological studies support arsenic exposure as a risk factor for T2D, although the precise mechanism is unclear. We hypothesized that chronic arsenic ingestion alters glucose homeostasis by impairing adaptive thermogenesis, i.e., body heat production in cold environments. Arsenic is a pervasive environmental contaminant, with more than 200 million people worldwide currently exposed to arsenic-contaminated drinking water. Male C57BL/6J mice exposed to sodium arsenite in drinking water at 300 µg/L for 9 wk experienced significantly decreased metabolic heat production when acclimated to chronic cold tolerance testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic exposure increased total fat mass and subcutaneous inguinal white adipose tissue (iWAT) mass. RNA sequencing analysis of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid metabolism. Western blotting in WAT confirmed that arsenic significantly decreased TOMM20, a correlate of mitochondrial abundance; PGC1A, a master regulator of mitochondrial biogenesis; and, CPT1B, the rate-limiting step of fatty acid oxidation (FAO). Our findings show that chronic arsenic exposure impacts the mitochondrial proteins of thermogenic tissues involved in energy expenditure and substrate regulation, providing novel mechanistic evidence for arsenic's role in T2D development.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Arsenitos/farmacología , Compuestos de Sodio/farmacología , Termogénesis/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Metacrilatos , Ratones , Ratones Endogámicos C57BL , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Superficie Celular/metabolismo , Siloxanos , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
13.
Occup Environ Med ; 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243757

RESUMEN

OBJECTIVES: The US National Toxicology Program (NTP) recently recommended in its Report on Carcinogens Monograph for Antimony Trioxide that antimony trioxide be listed as 'reasonably anticipated to be a human carcinogen' based on sufficient evidence of carcinogenicity in experimental animals and supporting evidence from mechanistic studies. Our goal was to estimate the possible human cancer risk from occupational exposure to antimony trioxide. METHODS: We selected data from 2-year inhalation studies in male and female mice conducted by the NTP and performed cancer dose-response analyses using cancer models and benchmark dose methods developed by the US Environmental Protection Agency. In these analyses, we generated benchmark doses and cancer slope factors for antimony trioxide, and then estimated human cancer risk under various exposure scenarios. Typical and worst-case inhalation scenarios in multiple occupational settings were used in risk estimation. RESULTS: In typical case scenarios, the occupational cancer risk from antimony trioxide was estimated to be 0.025 (25 in 1000) for persons working with flame retardants in plastics and textiles for 40 years. Under worst-case scenarios, the occupational cancer risk was estimated to be 0.11 (110 in 1000) for persons working with flame retardants in plastics and textiles. At the current Occupational Safety and Health Administration Permissible Exposure Limit, the cancer risk for occupational inhalation exposure of antimony trioxide was estimated to be 0.096 (96 in 1000). CONCLUSION: The risk estimates calculated in this study suggest that exposure to antimony trioxide at levels present in certain occupational settings results in a large increase in the risk of developing cancer.

14.
Environ Res ; 190: 109920, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32795691

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew's correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Fluorocarburos/toxicidad , Aprendizaje Automático , Tamizaje Masivo , Simulación del Acoplamiento Molecular , Receptores Androgénicos
15.
Purinergic Signal ; 15(3): 397-402, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31286385

RESUMEN

A P2X1-eYFP knock-in mouse was generated to study receptor expression and mobility in smooth muscle and blood cells. eYFP was added to the C-terminus of the P2X1R and replaced the native P2X1R. Fluorescence corresponding to P2X1-eYFPR was detected in urinary bladder smooth muscle, platelets and megakaryocytes. ATP-evoked currents from wild type and P2X1-eYFP isolated urinary bladder smooth muscle cells had the same peak current amplitude and time-course showing that the eYFP addition had no obvious effect on properties. Fluorescence recovery after photobleaching (FRAP) in bladder smooth muscle cells demonstrated that surface P2X1Rs are mobile and their movement is reduced following cholesterol depletion. Compared to the platelet and megakaryocyte, P2X1-eYFP fluorescence was negligible in red blood cells and the majority of smaller marrow cells. The spatial pattern of P2X1-eYFP fluorescence in the megakaryocyte along with FRAP assessment of mobility suggested that P2X1Rs are expressed extensively throughout the membrane invagination system of this cell type. The current study highlights that the spatiotemporal properties of P2X1R expression can be monitored in real time in smooth muscle cells and megakaryocytes/platelets using the eYFP knock-in mouse model.


Asunto(s)
Técnicas de Sustitución del Gen/métodos , Receptores Purinérgicos P2X1/análisis , Receptores Purinérgicos P2X1/metabolismo , Animales , Proteínas Bacterianas , Proteínas Luminiscentes , Ratones , Modelos Animales
16.
Environ Sci Technol ; 53(23): 13906-13918, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31746186

RESUMEN

Persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and other organochlorine compounds, are abundant in the environment and in foodstuffs from the Indian subcontinent. These environmental contaminants have been associated with a higher risk of diabetes in numerous studies. Asian Indians are well known to have a high risk of diabetes compared with other populations, and this risk is also found in migrant populations of Asian Indians in the United States, Europe, and elsewhere. We hypothesized that high plasma concentrations of POPs in Asian Indian migrants are linked to a variety of diabetes-related pathologies and explored the mechanism for the induction of these effects. We measured 30 environmental pollutants in plasma samples obtained from 147 participants in the Metabolic syndrome and Atherosclerosis in South Asians Living in America pilot study using a gas chromatography-tandem mass spectrometry analytical method that uses less than 0.5 mL of plasma. We found that plasma levels of o,p'-DDT and p,p'-DDT were independently associated with both body mass index (BMI) and waist circumference. Doubling the levels of the sums of these DDTs was associated with insulin insensitivity (-0.38 Matsuda index, p = 0.001), increased adiposity (1.26 kg/m2 BMI and 3.58 cm waist circumference increase, p < 0.0001), circulating insulin (12.9 mIU/L, p = 0.002), hepatic fat (-0.051 HU, p = 0.001), as well as increased odds of obesity (OR = 2.17, p < 0.001, BMI-based; OR = 2.37, p = 0.001, waist-based), prediabetes (OR = 1.55, p = 0.02), diabetes (OR = 1.72, p = 0.01), and fatty liver (OR = 1.66, p = 0.01) in multivariable models accounting for confounding by age, sex, years in the US, education, and fish protein. Furthermore, levels of DDTs were associated with increased hepatic fat and circulating insulin, independent of obesity and confounders. These findings suggest that exposure to DDTs may contribute to the risk of metabolic disease among Asian Indians by affecting hepatic fat levels independent of obesity.


Asunto(s)
Emigrantes e Inmigrantes , Contaminantes Ambientales , Animales , Europa (Continente) , Cromatografía de Gases y Espectrometría de Masas , Humanos , Proyectos Piloto , Estados Unidos
17.
Occup Environ Med ; 76(6): 376-381, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971425

RESUMEN

OBJECTIVES: The occupational exposure limit for trichloroethylene (TCE) in different countries varies from 1 to 100 ppm as an 8-hour time-weighted average (TWA). Many countries currently use 10 ppm as the regulatory standard for occupational exposures, but the biological effects in humans at this level of exposure remain unclear. The objective of our study was to evaluate alterations in immune and renal biomarkers among workers occupationally exposed to low levels of TCE below current regulatory standards. METHODS: We conducted a cross-sectional molecular epidemiology study of 80 healthy workers exposed to a wide range of TCE (ie, 0.4-229 ppm) and 96 comparable unexposed controls in China, and previously reported that TCE exposure was associated with multiple candidate biological markers related to immune function and kidney toxicity. Here, we conducted further analyses of all of the 31 biomarkers that we have measured to determine the magnitude and statistical significance of changes in the subgroup of workers (n=35) exposed to <10 ppm TCE compared with controls. RESULTS: Six immune biomarkers (ie, CD4+ effector memory T cells, sCD27, sCD30, interleukin-10, IgG and IgM) were significantly decreased (% difference ranged from -16.0% to -72.1%) and one kidney toxicity marker (kidney injury molecule-1, KIM-1) was significantly increased (% difference: +52.5%) among workers exposed to <10 ppm compared with the control group. These associations remained noteworthy after taking into account multiple comparisons using the false discovery rate (ie, <0.20). CONCLUSION: Our results suggest that occupational exposure to TCE below 10 ppm as an 8-hour TWA may alter levels of key markers of immune function and kidney toxicity.


Asunto(s)
Biomarcadores/análisis , Tricloroetileno/efectos adversos , Adulto , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/sangre , Biomarcadores/sangre , Ligando CD30/análisis , Ligando CD30/sangre , Recuento de Linfocito CD4/métodos , China , Estudios Transversales , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/análisis , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/sangre , Inmunoglobulina M/análisis , Inmunoglobulina M/sangre , Interleucina-10/análisis , Interleucina-10/sangre , Masculino , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Tricloroetileno/sangre
18.
Environ Res ; 172: 578-585, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30875511

RESUMEN

OBJECTIVE: Evaluate whether arsenic-related diabetes risks differ between people of low and high socioeconomic status (SES). METHODS: We used data collected between October 2007-December 2010 from a population-based cancer case-control study (N = 1301) in Northern Chile, an area with high arsenic water concentrations (>800 µg/L) and comprehensive records of past exposure. Information on lifetime exposure and potential confounders were obtained using structured interviews, questionnaires, and residential histories. Type 2 diabetes was defined as physician-diagnosed diabetes or oral hypoglycemic medication use. SES was measured using a 14-point scale based on ownership of household appliances, cars, internet access, or use of domestic help. Logistic regression was used to assess the relationship between arsenic and diabetes within strata of SES. RESULTS: Among those with low SES, the odds ratio (OR) for diabetes comparing individuals in the highest to lowest tertile of lifetime average arsenic exposure was 2.12 (95% confidence interval (CI) 1.29-3.49, p = 0.004). However, those in the high SES group were not at increased risk (OR = 1.12 [95% CI = 0.72-1.73]). CONCLUSIONS: Our findings provide evidence that risks of arsenic-related diabetes may be higher in Chile in people with low versus high SES.


Asunto(s)
Arsénico , Diabetes Mellitus Tipo 2 , Exposición a Riesgos Ambientales , Clase Social , Arsénico/efectos adversos , Estudios de Casos y Controles , Chile/epidemiología , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Factores de Riesgo
19.
Platelets ; 30(8): 962-966, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31008669

RESUMEN

TMEM16F is a surface membrane protein critical for platelet procoagulant activity, which exhibits both phospholipid scramblase and ion channel activities following sustained elevation of cytosolic Ca2+. The extent to which the ionic permeability of TMEM16F is important for platelet scramblase responses remains controversial. To date, only one study has reported the electrophysiological properties of TMEM16F in cells of platelet/megakaryocyte lineage, which observed cation-selectivity within excised patch recordings from murine marrow-derived megakaryocytes. This contrasts with reports using whole-cell recordings that describe this channel as displaying either selectivity for anions or being relatively non-selective amongst the major physiological monovalent ions. We have studied TMEM16F expression and channel activity in primary rat and mouse megakaryocytes and the human erythroleukemic (HEL) cell line that exhibits megakaryocytic surface markers. Immunocytochemical analysis was consistent with surface TMEM16F expression in cells from all three species. Whole-cell recordings in the absence of K+-selective currents revealed an outwardly rectifying conductance activated by a high intracellular Ca2+ concentration in all three species. These currents appeared after 5-6 minutes and were blocked by CaCCinh-A01, properties typical of TMEM16F. Ion substitution experiments showed that the underlying conductance was predominantly Cl--permeable in rat megakaryocytes and HEL cells, yet non-selective between monovalent anions and cations in mouse megakaryocytes. In conclusion, the present study further highlights the difference in ionic selectivity of TMEM16F in platelet lineage cells of the mouse compared to other mammalian species. This provides additional support for the ionic "leak" hypothesis that the scramblase activity of TMEM16F does not rely upon its ability to conduct ions of a specific type.


Asunto(s)
Anoctaminas/antagonistas & inhibidores , Calcio/metabolismo , Megacariocitos/metabolismo , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Animales , Transporte Biológico , Humanos , Ratones , Ratas
20.
Int Arch Occup Environ Health ; 92(8): 1077-1085, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31161417

RESUMEN

OBJECTIVES: The objective of our study was to evaluate the association between occupational exposure to trichloroethylene (TCE), a suspected lymphomagen, and serum levels of miRNAs in a cross-sectional molecular epidemiology study of TCE-exposed workers and comparable unexposed controls in China. METHODS: Serum levels of 40 miRNAs were compared in 74 workers exposed to TCE (median: 12 ppm) and 90 unexposed control workers. Linear regression models were used to test for differences in serum miRNA levels between exposed and unexposed workers and to evaluate exposure-response relationships across TCE exposure categories using a three-level ordinal variable [i.e., unexposed, < 12 ppm, the median value among workers exposed to TCE) and ≥ 12 ppm)]. Models were adjusted for sex, age, current smoking, current alcohol use, and recent infection. RESULTS: Seven miRNAs showed significant differences between exposed and unexposed workers at FDR (false discovery rate) < 0.20. miR-150-5p and let-7b-5p also showed significant inverse exposure-response associations with TCE exposure (Ptrend= 0.002 and 0.03, respectively). The % differences in serum levels of miR-150-5p relative to unexposed controls were - 13% and - 20% among workers exposed to < 12 ppm and ≥ 12 ppm TCE, respectively. CONCLUSIONS: miR-150-5p is involved in B cell receptor pathways and let-7b-5p plays a role in the innate immune response processes that are potentially important in the etiology of non-Hodgkin lymphoma (NHL). Further studies are needed to replicate these findings and to directly test the association between serum levels of these miRNAs and risk of NHL in prospective studies.


Asunto(s)
MicroARNs/sangre , Epidemiología Molecular , Exposición Profesional/análisis , Tricloroetileno/análisis , Biomarcadores/sangre , China , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA