Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Liver Int ; 44(2): 532-540, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014619

RESUMEN

BACKGROUND AND AIMS: Exercise training is recommended for all patients with metabolic dysfunction-associated steatotic liver disease and may reverse liver fibrosis. Whether exercise training improves liver fibrosis without body weight loss remains controversial. We further investigated this relationship using serum biomarkers of liver fibroinflammation in a post hoc analysis of an exercise trial where patients did not lose significant body weight. METHODS: In the NASHFit trial, patients with metabolic dysfunction-associated steatohepatitis were randomized to receive either moderate-intensity aerobic exercise training or standard clinical care for 20 weeks. Mediterranean-informed dietary counselling was provided to each group. Change in serum biomarkers was measured and compared between the two groups. RESULTS: Exercise training led to improvement in serum biomarkers of liver fibroinflammation, including (1) ≥17 IU/L reduction in alanine aminotransferase (ALT) in 53% of individuals in the exercise training group compared to 13% in the standard clinical care group (p < 0.001; mean reduction 24% vs. 10% respectively) and (2) improvement in CK18 (-61 vs. +71 ng/mL, p = 0.040). ALT improvement ≥17 IU/L was correlated with ≥30% relative reduction in magnetic resonance imaging-measured liver fat and PNPLA3 genotype. CONCLUSION: Exercise training improves multiple serum biomarkers of liver fibroinflammation at clinically significant thresholds of response without body weight loss. This study provides further evidence that exercise training should be viewed as a weight-neutral intervention for which response to intervention can be readily monitored with widely available non-invasive biomarkers that can be applied at the population level.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/patología , Ejercicio Físico/fisiología , Cirrosis Hepática/patología , Biomarcadores , Pérdida de Peso
2.
J Cell Mol Med ; 26(2): 570-582, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910361

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti-ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN-007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti-ELTD1 and OKN-007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti-ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti-ELTD1 was also shown to significantly affect other pro-angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti-ELTD1 and OKN treatments did not induce a pro-migratory phenotype within the tumours. Anti-ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti-ELTD1 therapies show promise as potential single-agent multi-focal therapies for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Anticuerpos Monoclonales/uso terapéutico , Bencenosulfonatos/farmacología , Bencenosulfonatos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Iminas , Ratones , Óxidos de Nitrógeno , Receptores Acoplados a Proteínas G
3.
J Neurooncol ; 160(3): 743-752, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36436150

RESUMEN

PURPOSE: Glioblastoma (GBM) is the most common and deadliest brain tumor with unrelenting and rapid disease progression. The standard of care for GBM is surgical excision followed by radiation with concurrent and adjuvant temozolomide-centered chemotherapy (TMZ). Treatment failure and resistance is the rule and despite advances in imaging technology, early detection of treatment failure or impending resistance remains a challenge. There is a dire, unmet, need in clinical practice for minimally-invasive diagnostic tools to enable timely understanding of disease progression and treatment response. Here, we aim to address this clinical need by leveraging a unique characteristic of GBM: the overexpression of the α2 variant of the IL-13 receptor in over 75% of GBM tumors. METHODS: In this study we examined patients with primary GBM from Penn State and Cleveland Clinic compared to healthy controls. RESULTS: IL13Rα2 was detectable in plasma of GBM patients using ELISA but detection could be optimized by PEG precipitation to enrich for extracellular vesicles (EVs). Patients with GBM had elevated levels of plasma IL13Rα2, which correlated to levels of this receptor in the tumor tissue. Elevated plasma levels of IL13Rα2 predicted longer overall survival (OS) (19.8 vs. 13.2 months). Similarly, detection of IL13Rα2 + cells in tumor tissue also predicted longer OS (22.1 vs. 12.2 months). CONCLUSION: These findings strongly suggest that expression of the IL13Rα2 receptor confer survival advantage in GBM patients, which can be determined through a minimally-invasive liquid biopsy. Detection of plasma IL13Rα2 can also be used to select GBM patients for targeted tumor therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Subunidad alfa2 del Receptor de Interleucina-13 , Humanos , Glioblastoma/tratamiento farmacológico , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Neoplasias Encefálicas/metabolismo , Temozolomida/uso terapéutico , Biopsia Líquida , Biomarcadores , Progresión de la Enfermedad
4.
J Cell Mol Med ; 24(2): 1738-1749, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31863639

RESUMEN

Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptores Acoplados a Proteínas G/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales/farmacología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Pollos , Glioblastoma/patología , Humanos , Ratones , Microvasos/efectos de los fármacos , Microvasos/patología , Receptores Notch/metabolismo , Carga Tumoral/efectos de los fármacos
5.
J Transl Med ; 18(1): 424, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33168005

RESUMEN

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is the most common brainstem cancer in childhood. This rapidly progressing brainstem glioma holds a very dismal prognosis with median survival of less than 1 year. Despite extensive research, no significant therapeutic advancements have been made to improve overall survival in DIPG patients. METHODS: Here, we used an orthotopic xenograft pediatric DIPG (HSJD-DIPG-007) mouse model to monitor the effects of anti-cancer agent, OKlahoma Nitrone-007 (OKN-007), as an inhibitor of tumor growth after 28 days of treatment. Using magnetic resonance imaging (MRI), we confirmed the previously described efficacy of LDN-193189, a known activin A receptor, type I (ACVR1) inhibitor, in decreasing tumor burden and found that OKN-007 was equally efficacious. RESULTS: After 28 days of treatment, the tumor volumes were significantly decreased in OKN-007 treated mice (p < 0.01). The apparent diffusion coefficient (ADC), as a measure of tissue structural alterations, was significantly decreased in OKN-007 treated tumor-bearing mice (p < 0.0001). Histological analysis also showed a significant decrease in CD34 expression, essential for angiogenesis, of OKN-007 treated mice (p < 0.05) compared to LDN-193189 treated mice. OKN-007-treated mice also significantly decreased protein expression of the human nuclear antigen (HNA) (p < 0.001), ACVR1 (p < 0.0001), and c-MET (p < 0.05), as well as significantly increased expression of cleaved caspase 3 (p < 0.001) and histone H3 K27-trimethylation (p < 0.01), compared to untreated mouse tumors. CONCLUSIONS: With the dismal prognosis and limited effective chemotherapy available for DIPG, there is significant room for continued research studies, and OKN-007 merits further exploration as a therapeutic agent.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Animales , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Niño , Glioma/tratamiento farmacológico , Humanos , Ratones , Óxidos de Nitrógeno , Oklahoma
6.
Chem Eng J ; 3962020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32523422

RESUMEN

Immunotherapy has been a promising candidate for cancer treatment. The combination of photothermal therapy (PTT) and immunotherapy have shown to cause tumor ablation and induce host immune response. However, this strategy is often hampered by a limited immune response and undesirable immunosuppression. In this work, we developed an immunologically modified nanoplatform, using ovalbumin (OVA)-coated PEGylated MnFe2O4 nanoparticles (NPs) loaded with R837 immunoadjuvant (R837-OVA-PEG-MnFe2O4 NPs) to synergize PTT and immunotherapy for the treatment of breast cancer. The designed R837-OVA-PEG-MnFe2O4 NPs are able to elicit significant immune responses in vitro and in vivo. MnFe2O4 NPs also allowed for a reduction of systemic immunosuppression through downregulation of M2-associated cytokines. More importantly, the R837-OVA-PEG-MnFe2O4 NPs under laser irradiation effectively inhibited tumor growth and prevented lung metastases, leading to a prolonged survival time and improved survival rate. In addition, the designed multitasking MnFe2O4 NPs showed as a good contrast agent for magnetic resonance (MR) imaging to detect orthotopic breast tumor in vivo. Our work provides a novel strategy for combined PTT and improved immunotherapy in the treatment of breast and other metastatic cancers.

7.
J Urol ; 195(3): 631-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26307161

RESUMEN

PURPOSE: Interstitial cystitis/bladder pain syndrome is a bladder pain disorder associated with voiding symptomatology and other systemic chronic pain disorders. Currently diagnosing interstitial cystitis/bladder pain syndrome is complicated as patients present with a wide range of symptoms, physical examination findings and clinical test responses. One hypothesis is that interstitial cystitis symptoms arise from increased bladder permeability to urine solutes. This study establishes the feasibility of using contrast enhanced magnetic resonance imaging to quantify bladder permeability in patients with interstitial cystitis. MATERIALS AND METHODS: Permeability alterations in bladder urothelium were assessed by intravesical administration of the magnetic resonance imaging contrast agent Gd-DTPA (Gd-diethylenetriaminepentaacetic acid) in a small cohort of patients. Magnetic resonance imaging signal intensity in patient and control bladders was compared regionally and for entire bladders. RESULTS: Quantitative assessment of magnetic resonance imaging signal intensity indicated a significant increase in signal intensity in anterior bladder regions compared to posterior regions in patients with interstitial cystitis (p <0.01) and significant increases in signal intensity in anterior bladder regions (p <0.001). Kurtosis (shape of probability distribution) and skewness (measure of probability distribution asymmetry) were associated with contrast enhancement in total bladders in patients with interstitial cystitis vs controls (p <0.05). Regarding symptomatology interstitial cystitis cases differed significantly from controls on the SF-36®, PUF (Pelvic Pain and Urgency/Frequency) and ICPI (Interstitial Cystitis Problem Index) questionnaires with no overlap in the score range in each group. ICSI (Interstitial Cystitis Symptom Index) differed significantly but with a slight overlap in the range of scores. CONCLUSIONS: Data suggest that contrast enhanced magnetic resonance imaging provides an objective, quantifiable measurement of bladder permeability that could be used to stratify bladder pain patients and monitor therapy.


Asunto(s)
Medios de Contraste/farmacocinética , Cistitis Intersticial/diagnóstico , Cistitis Intersticial/metabolismo , Gadolinio DTPA/farmacocinética , Imagen por Resonancia Magnética/métodos , Vejiga Urinaria/metabolismo , Adulto , Estudios de Casos y Controles , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Permeabilidad
8.
J Urol ; 193(4): 1394-400, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25463988

RESUMEN

PURPOSE: Interstitial cystitis/painful bladder syndrome is a devastating disease associated with multiple symptoms. It is usually diagnosed based on pain, urgency and frequency in the absence of other known causes. To our knowledge there is no diagnostic test to date. MATERIALS AND METHODS: In a model of rats intravesically exposed to protamine sulfate we performed in vivo diagnostic contrast enhanced magnetic resonance imaging with intravesical administration of Gd-diethylenetriamine pentaacetic acid contrast medium via a catheter to visualize increased bladder urothelium permeability. Gd-diethylenetriamine pentaacetic acid was administered intravenously to visualize secondary tissue effects in the colon. RESULTS: Bladder urothelium and colon mucosa were assessed 24 hours after bladder protamine sulfate exposure. Enhanced contrast magnetic resonance imaging established bladder urothelium leakage of Gd-diethylenetriamine pentaacetic acid according to the change in magnetic resonance imaging signal intensity in rats exposed to protamine sulfate vs controls (mean ± SD 399.7% ± 68.7% vs 39.2% ± 12.2%, p < 0.0001) as well as colon related uptake of contrast agent (mean 65.2% ± 17.1% vs 20.8% ± 9.8%, p < 0.01) after bladder protamine sulfate exposure. The kinetics of Gd-diethylenetriamine pentaacetic acid uptake and excretion were also assessed during 20 minutes of bladder and 30 minutes of colon exposure with increased signal intensity at 7 and 12 minutes, respectively. CONCLUSIONS: These preliminary studies indicate that contrast enhanced magnetic resonance imaging can be used to monitor primary bladder urothelium loss of permeability and secondary enhanced contrast medium in the colon mucosa. It can be considered a potential clinical diagnostic method for interstitial cystitis/painful bladder syndrome that involves loss of the permeability barrier. It can also be used to assess visceral organ cross talk.


Asunto(s)
Colon/fisiología , Medios de Contraste , Cistitis Intersticial/diagnóstico , Imagen por Resonancia Magnética/métodos , Vejiga Urinaria/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Permeabilidad , Ratas , Ratas Sprague-Dawley
9.
BMC Cancer ; 15: 522, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26177924

RESUMEN

BACKGROUND: High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. METHODS: GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. RESULTS: Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. CONCLUSIONS: These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine transferase (MGMT) mediated resistance, as is the case with TMZ, indicating that AG119 may be potentially useful in treating resistant gliomas.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Dacarbazina/análogos & derivados , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Glioma/patología , Ratones , Análisis de Supervivencia , Temozolomida , Proteínas Supresoras de Tumor
10.
Biochim Biophys Acta ; 1832(12): 2153-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23959048

RESUMEN

Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Óxidos N-Cíclicos/inmunología , Modelos Animales de Enfermedad , Radicales Libres/análisis , Glioma/metabolismo , Imagen por Resonancia Magnética , Detección de Spin , Albúminas , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Medios de Contraste , Radicales Libres/aislamiento & purificación , Gadolinio DTPA , Glioma/diagnóstico por imagen , Glioma/patología , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos C57BL , Óxidos de Nitrógeno/metabolismo , Oxidación-Reducción , Radiografía , Marcadores de Spin/síntesis química , Células Tumorales Cultivadas , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
Geroscience ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512579

RESUMEN

Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8-9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.

12.
Sci Rep ; 14(1): 2389, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287054

RESUMEN

The association between anemia and outcomes in glioblastoma patients is unclear. We analyzed data from 1346 histologically confirmed adult glioblastoma patients in the TriNetX Research Network. Median hemoglobin and hematocrit levels were quantified for 6 months following diagnosis and used to classify patients as anemic or non-anemic. Associations of anemia and iron supplementation of anemic patients with median overall survival (median-OS) were then studied. Among 1346 glioblastoma patients, 35.9% of male and 40.5% of female patients were classified as anemic using hemoglobin-based WHO guidelines. Among males, anemia was associated with reduced median-OS compared to matched non-anemic males using hemoglobin (HR 1.24; 95% CI 1.00-1.53) or hematocrit-based cutoffs (HR 1.28; 95% CI 1.03-1.59). Among females, anemia was not associated with median-OS using hemoglobin (HR 1.00; 95% CI 0.78-1.27) or hematocrit-based cutoffs (HR: 1.10; 95% CI 0.85-1.41). Iron supplementation of anemic females trended toward increased median-OS (HR 0.61; 95% CI 0.32-1.19) although failing to reach statistical significance whereas no significant association was found in anemic males (HR 0.85; 95% CI 0.41-1.75). Functional transferrin-binding assays confirmed sexually dimorphic binding in resected patient samples indicating underlying differences in iron biology. Anemia among glioblastoma patients exhibits a sex-specific association with survival.


Asunto(s)
Anemia , Glioblastoma , Adulto , Humanos , Masculino , Femenino , Hierro , Glioblastoma/complicaciones , Anemia/complicaciones , Hemoglobinas/metabolismo , Suplementos Dietéticos
13.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896071

RESUMEN

Recently renamed, metabolic dysfunction-associated steatotic liver disease remains a leading cause of chronic liver disease worldwide. Regular physical activity is recommended as a treatment for all with this condition because it is highly efficacious, especially when exercise training is undertaken with a specific goal in mind. Despite decades of research demonstrating exercise's efficacy, key questions remain about the mechanism of benefit and most efficacious dose, as well as the independent impact on liver histology. To answer these questions, we present the design of a 16-week randomized controlled clinical trial of 45 adults aged 18-69 years with metabolic dysfunction-associated steatohepatitis. The primary aim of this study is to better understand the dose required and mechanisms to explain how exercise impacts multiple clinical end points in metabolic dysfunction-associated steatohepatitis. The primary outcome is MRI-measured liver fat. Secondary outcomes include other biomarkers of liver fibroinflammation, liver histology, and mechanistic pathways, as well as cardiometabolic risk and quality of life. This is the first study to compare different doses of exercise training to determine if there is a differential impact on imaging and serum biomarkers as well as liver histology.


Asunto(s)
Ejercicio Físico , Humanos , Persona de Mediana Edad , Adulto , Anciano , Adolescente , Masculino , Femenino , Adulto Joven , Terapia por Ejercicio/métodos , Hígado , Imagen por Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/terapia , Biomarcadores/sangre , Calidad de Vida
14.
Redox Biol ; 59: 102550, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470129

RESUMEN

Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Enfermedades Neurodegenerativas , Ratones , Animales , Mitocondrias , Superóxido Dismutasa/genética , Neuronas Motoras , Superóxido Dismutasa-1/genética , Fenotipo , Parálisis/genética , Inflamación/genética
15.
NMR Biomed ; 25(4): 685-94, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21954105

RESUMEN

The assessment of metabolites by (1)H MRS can provide information regarding glioma growth, and may be able to distinguish between different glioma models. Rat C6, 9 L/LacZ, F98 and RG2, and mouse GL261, cells were intracerebrally implanted into the respective rodents, and human U87 MG cells were implanted into athymic rats. Ethyl-nitrosourea induction was also used. Glioma metabolites [e.g. total choline (tCho), total creatine (tCr), N-acetylaspartate (NAA), lactate (Lac), glutamine (Gln), glutamate (Glu), aspartate (Asp), guanosine (Gua), mobile lipids and macromolecules (MMs)] were assessed from (1)H MRS using point-resolved spectroscopy (PRESS) [TE = 24 ms; TR = 2500 ms; variable pulse power and optimized relaxation delay (VAPOR) water suppression; 27-µL and 8-µL voxels in rats and mice, respectively] at 7 T. Alterations in metabolites (Totally Automatic Robust Quantitation in NMR, TARQUIN) in tumors were characterized by increases in lipids (Lip1.3: 8.8-54.5 mM for C6 and GL261) and decreases in NAA (1.3-2.0 mM for RG2, GL261 and C6) and tCr (0.8-4.0 mM for F98, RG2, GL261 and C6) in some models. F98, RG2, GL261 and C6 models all showed significantly decreased (p < 0.05) tCr, and RG2, GL261 and C6 models all exhibited significantly decreased (p < 0.05) NAA. The RG2 model showed significantly decreased (p < 0.05) Gln and Glu, the C6 model significantly decreased (p < 0.05) Asp, and the F98 and U87 models significantly decreased (p < 0.05) Gua, compared with controls. The GL261 model showed the greatest alterations in metabolites. (1)H MRS was able to differentiate the metabolic profiles in many of the seven rodent glioma models assessed. These models are considered to resemble certain characteristics of human glioblastomas, and this study may be helpful in selecting appropriate models.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Diagnóstico por Computador/métodos , Glioma/metabolismo , Glioma/patología , Espectroscopía de Resonancia Magnética/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Protones , Ratas , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Brain Sci ; 12(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053843

RESUMEN

Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16-22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®)), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers.

17.
Cells ; 11(9)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563787

RESUMEN

One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.


Asunto(s)
Neoplasias Encefálicas , Exorribonucleasas , Glioblastoma , Animales , Neoplasias Encefálicas/metabolismo , Movimiento Celular/genética , Proliferación Celular , Exorribonucleasas/metabolismo , Glioblastoma/metabolismo , Humanos , Ratones , Procesos Neoplásicos , ARN Mensajero/uso terapéutico
18.
J Cell Mol Med ; 15(4): 837-49, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20497492

RESUMEN

Angiogenesis is essential to tumour progression and a precise evaluation of angiogenesis is important for tumour early diagnosis and treatment. The quantitative and dynamic in vivo assessment of tumour angiogenesis can be achieved by molecular magnetic resonance imaging (mMRI). Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the main regulatory systems in angiogenesis and have been used as hot targets for radionuclide-based molecular imaging. However, little research has been accomplished in targeting VEGF/VEGFRs by mMRI. In our study, we aimed to assess the expression of VEGFR2 in C6 gliomas by using a specific molecular probe with mMRI. The differential uptake of the probe conjugated to anti-VEGFR2 monoclonal antibody, shown by varied increases in T(1) signal intensity during a 2 hr period, demonstrated the heterogeneous expression of VEGFR2 in different tumour regions. Microscopic fluorescence imaging, obtained for the biotin group in the probe with streptavidin-Cy3, along with staining for cellular VEGFR2 levels, laminin and CD45, confirmed the differential distribution of the probe which targeted VEGFR2 on endothelial cells. The angiogenesis process was also assessed using magnetic resonance angiography, which quantified tumour blood volume and provided a macroscopic view and a dynamic change of the correlation between tumour vasculature and VEGFR2 expression. Together these results suggest mMRI can be very useful in assessing and characterizing the expression of specific angiogenic markers in vivo and help evaluate angiogenesis associated with tumour progression.


Asunto(s)
Glioma/metabolismo , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Biotina/metabolismo , Western Blotting , Línea Celular Tumoral , Glioma/irrigación sanguínea , Glioma/patología , Inmunohistoquímica , Angiografía por Resonancia Magnética , Masculino , Sondas Moleculares/metabolismo , Neovascularización Patológica/metabolismo , Ácido Pentético/metabolismo , Ratas , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Albúmina Sérica Bovina/metabolismo
19.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943535

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, often incapacitating condition characterized by pain seeming to originate in the bladder in conjunction with lower urinary tract symptoms of frequency and urgency, and consists of a wide range of clinical phenotypes with diverse etiologies. There are currently no diagnostic tests for IC/BPS. Magnetic resonance imaging (MRI) is a relatively new tool to assess IC/BPS. There are several methodologies that can be applied to assess either bladder wall or brain-associated alterations in tissue morphology and/or pain. IC/BPS is commonly associated with bladder wall hyperpermeability (BWH), particularly in severe cases. Our group developed a contrast-enhanced magnetic resonance imaging (CE-MRI) approach to assess BWH in preclinical models for IC/BPS, as well as for a pilot study for IC/BPS patients. We have also used the CE-MRI approach to assess possible therapies to alleviate the BWH in preclinical models for IC/BPS, which will hopefully pave the way for future clinical trials. In addition, we have used molecular-targeted MRI (mt-MRI) to quantitatively assess BWH biomarkers. Biomarkers, such as claudin-2, may be important to assess and determine the severity of BWH, as well as to assess therapeutic efficacy. Others have also used other MRI approaches to assess the bladder wall structural alterations with diffusion-weighted imaging (DWI), by measuring changes in the apparent diffusion coefficient (ADC), diffusion tensor imaging (DTI), as well as using functional MRI (fMRI) to assess pain and morphological MRI or DWI to assess anatomical or structural changes in the brains of patients with IC/BPS. It would be beneficial if MRI-based diagnostic tests could be routinely used for these patients and possibly used to assess potential therapeutics.

20.
Geroscience ; 43(2): 563-578, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846885

RESUMEN

Rapamycin (RAPA) is found to have neuro-protective properties in various neuroinflammatory pathologies, including brain aging. With magnetic resonance imaging (MRI) techniques, we investigated the effect of RAPA in a lipopolysaccharide (LPS)-induced inflammaging model in rat brains. Rats were exposed to saline (control), or LPS alone or LPS combined with RAPA treatment (via food over 6 weeks). Arterial spin labeling (ASL) perfusion imaging was used to measure relative cerebral blood flow (rCBF). MR spectroscopy (MRS) was used to measure brain metabolite levels. Contrast-enhanced MRI (CE-MRI) was used to assess blood-brain barrier (BBB) permeability. Immunohistochemistry (IHC) was used to confirm neuroinflammation. RAPA restored NF-κB and HIF-1α to normal levels. RAPA was able to significantly restore rCBF in the cerebral cortex post-LPS exposure (p < 0.05), but not in the hippocampus. In the hippocampus, RAPA was able to restore total creatine (Cr) acutely, and N-acetyl aspartate (NAA) at 6 weeks, post-LPS. Myo-inositol (Myo-Ins) levels were found to decrease with RAPA treatment acutely post-LPS. RAPA was also able to significantly restore the BBB acutely post-LPS in both the cortex and hippocampus (p < 0.05 for both). RAPA was found to increase the percent change in BOLD signal in the cortex at 3 weeks, and in the hippocampus at 6 weeks post-LPS, compared to LPS alone. RAPA treatment also restored the neuronal and macro-vascular marker, EphB2, back to normal levels. These results indicate that RAPA may play an important therapeutic role in inhibiting neuroinflammation by normalizing brain vascularity, BBB, and some brain metabolites, and has a high translational capability.


Asunto(s)
Barrera Hematoencefálica , Sirolimus , Animales , Encéfalo , Circulación Cerebrovascular , Imagen por Resonancia Magnética , Ratas , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA