Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 293(43): 16559-16571, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30181210

RESUMEN

The worldwide incidence of neisserial infections, particularly gonococcal infections, is increasingly associated with antibiotic-resistant strains. In particular, extensively drug-resistant Neisseria gonorrhoeae strains that are resistant to third-generation cephalosporins are a major public health concern. There is a pressing clinical need to identify new targets for the development of antibiotics effective against Neisseria-specific processes. In this study, we report that the bacterial disulfide reductase DsbD is highly prevalent and conserved among Neisseria spp. and that this enzyme is essential for survival of N. gonorrhoeae DsbD is a membrane-bound protein that consists of two periplasmic domains, n-DsbD and c-DsbD, which flank the transmembrane domain t-DsbD. In this work, we show that the two functionally essential periplasmic domains of Neisseria DsbD catalyze electron transfer reactions through unidirectional interdomain interactions, from reduced c-DsbD to oxidized n-DsbD, and that this process is not dictated by their redox potentials. Structural characterization of the Neisseria n- and c-DsbD domains in both redox states provides evidence that steric hindrance reduces interactions between the two periplasmic domains when n-DsbD is reduced, thereby preventing a futile redox cycle. Finally, we propose a conserved mechanism of electron transfer for DsbD and define the residues involved in domain-domain recognition. Inhibitors of the interaction of the two DsbD domains have the potential to be developed as anti-neisserial agents.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Disulfuros/metabolismo , Neisseria gonorrhoeae/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Disulfuros/química , Modelos Moleculares , Oxidación-Reducción , Dominios Proteicos
2.
Molecules ; 21(7)2016 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-27438817

RESUMEN

Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Factores de Virulencia/antagonistas & inhibidores , Virulencia/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Simulación por Computador , Descubrimiento de Drogas , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa
3.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 1): 31-38, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29372905

RESUMEN

The membrane protein DsbD is a reductase that acts as an electron hub, translocating reducing equivalents from cytoplasmic thioredoxin to a number of periplasmic substrates involved in oxidative protein folding, cytochrome c maturation and oxidative stress defence. DsbD is a multi-domain protein consisting of a transmembrane domain (t-DsbD) flanked by two periplasmic domains (n-DsbD and c-DsbD). Previous studies have shown that DsbD is required for the survival of the obligate human pathogen Neisseria meningitidis. To help understand the structural and functional aspects of N. meningitidis DsbD, the two periplasmic domains which are required for electron transfer are being studied. Here, the expression, purification and biophysical properties of n-NmDsbD and c-NmDsbD are described. The crystallization and crystallographic analysis of n-NmDsbD and c-NmDsbD are also described in both redox states, which differ only in the presence or absence of a disulfide bond but which crystallized in completely different conditions. Crystals of n-NmDsbDOx, n-NmDsbDRed, c-NmDsbDOx and c-NmDsbDRed diffracted to 2.3, 1.6, 2.3 and 1.7 Šresolution and belonged to space groups P213, P321, P41 and P1211, respectively.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/enzimología , Oxidorreductasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Cristalización , Cristalografía por Rayos X , Transporte de Electrón , Modelos Moleculares , Neisseria meningitidis/genética , Oxidorreductasas/genética , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Biomol NMR Assign ; 11(2): 181-186, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28589218

RESUMEN

DsbD is a disulfide bond reductase present in the inner membrane of many Gamma-Proteobacteria. In the human pathogen Neisseria meningitidis, DsbD is required for viability and represents a potential target for the development of antibiotics. Here we report the chemical shift assignments (HN, N, Cα and Cß) for the reduced and oxidized forms of the two periplasmic domains of N. meningitidis DsbD, n-NmDsbD and c-NmDsbD. The backbone amide resonances in all four forms were completely assigned, and the secondary structures for the core regions of the proteins were calculated using 13Cαß shifts. The reduced and oxidized forms of each domain have similar secondary shifts suggesting they retain the same fold. We anticipate that these data will provide an important basis for studying the interaction between n-NmDsbD and c-NmDsbD, which is required for electron transfer across the bacterial cytoplasmic membrane.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis , Resonancia Magnética Nuclear Biomolecular , Periplasma/metabolismo , Secuencia de Aminoácidos , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA