Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 105(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305775

RESUMEN

Filoviridae is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles. The filovirid genome is a linear, non-segmented RNA with five canonical open reading frames (ORFs) that encode a nucleoprotein (NP), a polymerase cofactor (VP35), a glycoprotein (GP1,2), a transcriptional activator (VP30) and a large protein (L) containing an RNA-directed RNA polymerase (RdRP) domain. All filovirid genomes encode additional proteins that vary among genera. Several filovirids (e.g., Ebola virus, Marburg virus) are pathogenic for humans and highly virulent. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Filoviridae, which is available at www.ictv.global/report/filoviridae.


Asunto(s)
Ebolavirus , Marburgvirus , Rhabdoviridae , Animales , Humanos , Ebolavirus/genética , Rhabdoviridae/genética , Filogenia , Genoma Viral , Replicación Viral , Mamíferos/genética
2.
J Virol ; 96(4): e0173921, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908447

RESUMEN

Two strains of Middle East respiratory syndrome coronavirus (MERS-CoV), England 1 and Erasmus Medical Centre/2012 (EMC/2012), were used to challenge common marmosets (Callithrix jacchus) by three routes of infection: aerosol, oral, and intranasal. Animals challenged by the intranasal and aerosol routes presented with mild, transient disease, while those challenged by the oral route presented with a subclinical immunological response. Animals challenged with MERS-CoV strain EMC/2012 by the aerosol route responded with primary and/or secondary pyrexia. Marmosets had minimal to mild multifocal interstitial pneumonia, with the greatest relative severity being observed in animals challenged by the aerosol route. Viable virus was isolated from the host in throat swabs and lung tissue. The transient disease described is consistent with a successful host response and was characterized by the upregulation of macrophage and neutrophil function observed in all animals at the time of euthanasia. IMPORTANCE Middle East respiratory syndrome is caused by a human coronavirus, MERS-CoV, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Humans typically exhibit fever, cough, shortness of breath, gastrointestinal issues, and breathing difficulties, which can lead to pneumonia and/or renal complications. This emerging disease resulted in the first human lethal cases in 2012 and has a case fatality rate of approximately 36%. Consequently, there is a need for medical countermeasures and appropriate animal models for their assessment. This work has demonstrated the requirement for higher concentrations of virus to cause overt disease. Challenge by the aerosol, intranasal, and oral routes resulted in no or mild disease, but all animals had an immunological response. This shows that an appropriate early immunological response is able to control the disease.


Asunto(s)
COVID-19/metabolismo , Modelos Animales de Enfermedad , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , SARS-CoV-2/metabolismo , Animales , Callithrix , Humanos
3.
Arch Virol ; 168(8): 220, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537381

RESUMEN

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format. Virus names remain unchanged and valid. Here, we outline the revised taxonomy of family Filoviridae as approved by the ICTV in April 2023.


Asunto(s)
Ebolavirus , Filoviridae , Marburgvirus , Virus
4.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891534

RESUMEN

A small-scale study with Mosi-guard Natural spray, an insect repellent containing Citriodiol, was performed to determine if it has virucidal activity against SARS-CoV-2. A liquid test examined the activity of the insect repellent and the individual components for virucidal activity. A surface contact test looked at the activity of the insect repellent when impregnated on a latex surface as a synthetic skin for potential topical prophylactic application. Both Mosi-guard Natural spray and Citriodiol, as well as other components of the repellent, had virucidal activity in the liquid contact test. On a latex surface used to simulate treated skin, the titre of SARS-CoV-2 was less over time on the Mosi-guard Natural-treated surface but virus was still recovered.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Repelentes de Insectos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Humanos , Extractos Vegetales/uso terapéutico
5.
PLoS Comput Biol ; 16(11): e1008375, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137116

RESUMEN

Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.


Asunto(s)
Ebolavirus/fisiología , Modelos Biológicos , Replicación Viral/fisiología , Animales , Teorema de Bayes , Chlorocebus aethiops , Biología Computacional , Simulación por Computador , Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Cinética , Cadenas de Markov , Método de Montecarlo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Vero , Carga Viral/fisiología
6.
J Gen Virol ; 100(6): 911-912, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31021739

RESUMEN

Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae.


Asunto(s)
Filoviridae/clasificación , Animales , Filoviridae/genética , Genoma Viral/genética , Humanos , ARN Viral/genética
7.
Emerg Infect Dis ; 24(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29261093

RESUMEN

Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.


Asunto(s)
Desinfectantes/farmacología , Ebolavirus/efectos de los fármacos , Blanqueadores/farmacología , Células Cultivadas/virología , Pruebas con Sangre Seca , Humanos , Laboratorios , Ácido Peracético/farmacología
8.
Genome Res ; 25(1): 129-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25236617

RESUMEN

Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.


Asunto(s)
Burkholderia pseudomallei/genética , Epigénesis Genética , Genoma Bacteriano , Recombinación Genética , Transcriptoma , Animales , Cartilla de ADN , ADN Bacteriano/genética , Escherichia coli/genética , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Genómica , Haplotipos , Humanos , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
9.
J Infect Dis ; 214(suppl 3): S268-S274, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27471321

RESUMEN

Ebola virus Makona (EBOV-Makona; from the 2013-2016 West Africa outbreak) shows decreased virulence in an immune-deficient mouse model, compared with a strain from 1976. Unlike other filoviruses tested, EBOV-Makona may be slightly more virulent by the aerosol route than by the injected route, as 2 mice died following aerosol exposure, compared with no mortality among mice that received intraperitoneal injection of equivalent or higher doses. Although most mice did not succumb to infection, the detection of an immunoglobulin G antibody response along with observed clinical signs suggest that the mice were infected but able to clear the infection and recover. We hypothesize that this may be due to the growth rates and kinetics of the virus, which appear slower than that for other filoviruses and consequently give more time for an immune response that results in clearance of the virus. In this instance, the immune-deficient mouse model is unlikely to be appropriate for testing medical countermeasures against this EBOV-Makona stock but may provide insight into pathogenesis and the immune response to virus.


Asunto(s)
Anticuerpos Antivirales/sangre , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Inmunoglobulina G/sangre , Aerosoles , Animales , Modelos Animales de Enfermedad , Ebolavirus/crecimiento & desarrollo , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/patología , Humanos , Ratones
10.
J Infect Dis ; 212 Suppl 2: S336-45, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26209682

RESUMEN

Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema.


Asunto(s)
Callithrix/virología , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Enfermedades de los Monos/virología , Infecciones del Sistema Respiratorio/virología , Animales , Callithrix/inmunología , Modelos Animales de Enfermedad , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Hígado/inmunología , Hígado/patología , Hígado/virología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/patología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/patología , Bazo/inmunología , Bazo/patología , Bazo/virología , Carga Viral/inmunología
11.
J Clin Microbiol ; 53(10): 3148-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179307

RESUMEN

Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples.


Asunto(s)
Tampones (Química) , Desinfectantes/farmacología , Ebolavirus/efectos de los fármacos , Ebolavirus/fisiología , Etanol , Viabilidad Microbiana/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Animales , Sangre/virología , Callithrix , Ratones
12.
Int J Exp Pathol ; 95(6): 378-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25477002

RESUMEN

Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.


Asunto(s)
Burkholderia mallei , Burkholderia pseudomallei , Muermo/microbiología , Muermo/patología , Melioidosis/microbiología , Melioidosis/patología , Animales , Antígenos Bacterianos , Carga Bacteriana , Callithrix , Modelos Animales de Enfermedad , Femenino , Muermo/mortalidad , Inyecciones Subcutáneas , Masculino , Melioidosis/mortalidad , Índice de Severidad de la Enfermedad
13.
Arch Virol ; 159(4): 821-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24122154

RESUMEN

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group prepares proposals on the classification and nomenclature of filoviruses to reflect current knowledge or to correct disagreements with the International Code of Virus Classification and Nomenclature (ICVCN). In recent years, filovirus taxonomy has been corrected and updated, but parts of it remain controversial, and several topics remain to be debated. This article summarizes the decisions and discussion of the currently acting ICTV Filoviridae Study Group since its inauguration in January 2012.


Asunto(s)
Clasificación/métodos , Filoviridae/clasificación , Terminología como Asunto , Humanos
14.
Arch Virol ; 159(5): 1229-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24190508

RESUMEN

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV H.sap/COD/95/Kik-abc1") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.


Asunto(s)
Filoviridae/clasificación , Filoviridae/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Genoma Viral
16.
Int J Exp Pathol ; 94(2): 156-68, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23441639

RESUMEN

Marburg virus causes a highly infectious and lethal haemorrhagic fever in primates and may be exploited as a potential biothreat pathogen. To combat the infection and threat of Marburg haemorrhagic fever, there is a need to develop and license appropriate medical countermeasures. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess therapies against Marburg haemorrhagic fever, initial susceptibility, lethality and pathogenesis studies were performed. Low doses of virus, between 4 and 28 TCID50 , were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to disease between 8 and 11 days postchallenge. Typical signs of Marburg virus infection were observed including haemorrhaging and a transient rash. In pathogenesis studies, virus was isolated from the animals' lungs from day 3 postchallenge and from the liver, spleen and blood from day 5 postchallenge. Early signs of histopathology were apparent in the kidney and liver from day 3. The most striking features were observed in animals exhibiting severe clinical signs, which included high viral titres in all organs, with the highest levels in the blood, increased levels in liver function enzymes and blood clotting times, decreased levels in platelets, multifocal moderate-to-severe hepatitis and perivascular oedema.


Asunto(s)
Callithrix , Modelos Animales de Enfermedad , Exposición por Inhalación , Enfermedad del Virus de Marburg/patología , Marburgvirus/patogenicidad , Enfermedades de los Monos/patología , Animales , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Femenino , Humanos , Riñón/patología , Riñón/virología , Hígado/patología , Hígado/virología , Pulmón/patología , Pulmón/virología , Masculino , Enfermedad del Virus de Marburg/virología , Marburgvirus/aislamiento & purificación , Enfermedades de los Monos/virología , Bazo/patología , Bazo/virología
17.
Viruses ; 14(4)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458510

RESUMEN

During outbreaks of virus diseases, many variants may appear, some of which may be of concern. Stability in an aerosol of several Ebola virus and Marburg virus variants was investigated. Studies were performed measuring aerosol survival using the Goldberg drum but no significant difference in biological decay rates between variants was observed. In addition, historic data on virulence in a murine model of different Ebola virus variants were compared to newly presented data for Ebola virus Kikwit in the A129 Interferon alpha/beta receptor-deficient mouse model. Ebola virus Kikwit was less virulent than Ebola virus Ecran in our mouse model. The mouse model may be a useful tool for studying differences in virulence associated with different variants whereas aerosol stability studies may not need to be conducted beyond the species level.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Marburgvirus , Aerosoles , Animales , Modelos Animales de Enfermedad , Ebolavirus/genética , Ratones , Virulencia
18.
Viruses ; 14(9)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146863

RESUMEN

Nipah virus is a relatively newly discovered emerging virus on the WHO list of priority pathogens which has the potential to cause outbreaks with high fatality rates. Whilst progress is being made in the development of animal models for evaluating vaccines and therapies, some of the more fundamental data on Nipah virus are lacking. We performed studies to generate novel information on the aerosol survival of Nipah virus and to look at the efficacy of two common disinfectants. We also performed studies to evaluate the inactivation of Nipah virus by using neutral buffered formalin. Nipah virus was relatively stable in a small particle (1-5 µm) aerosol in the dark, with it having a decay rate of 1.46%min-1. Sodium hypochlorite (at 10%) and ethanol (at 80%) reduced the titre of Nipah virus to undetectable levels. Nipah virus that was in tissue culture medium was also inactivated after 24 h in the presence of 10% formalin.


Asunto(s)
Desinfectantes , Infecciones por Henipavirus , Virus Nipah , Aerosoles , Animales , Desinfectantes/farmacología , Desinfección , Etanol , Formaldehído/farmacología , Virus Nipah/fisiología , Hipoclorito de Sodio/farmacología , Inactivación de Virus
19.
Viruses ; 14(8)2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-36016391

RESUMEN

A transduced mouse model of SARS-CoV-2 infection was established using Balb/c mice. This was achieved through the adenovirus-vectored delivery of the hACE2 gene, to render the mice transiently susceptible to the virus. The model was characterised in terms of the dissemination of hACE2 receptor expression, the dissemination of three SARS-CoV-2 virus variants in vivo up to 10 days following challenge, the resulting histopathology and the clinical signs induced in the mice. In transduced mice, the infection was short-term, with a rapid loss in body weight starting at day 2 with maximum weight loss at day 4, followed by subsequent recovery until day 10. The induced expression of the hACE2 receptor was evident in the lungs, but, upon challenge, the SARS-CoV-2 virus disseminated beyond the lungs to spleen, liver and kidney, peaking at day 2 post infection. However, by day 10 post infection, the virus was undetectable. The lung histopathology was characterised by bronchial and alveolar inflammation, which was still present at day 10 post infection. Transduced mice had differential responses to viral variants ranking CVR-Glasgow 1 > Victoria-1 > England-2 isolates in terms of body weight loss. The transduced mouse model provides a consistent and manipulatable model of SARS-CoV-2 infection to screen viral variants for their relative virulence and possible interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , Modelos Animales de Enfermedad , Pulmón , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética
20.
Microb Pathog ; 51(6): 471-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21798336

RESUMEN

A variety of studies have implicated neutrophils and the rapid induction of cytokine in the host response in melioidosis. Here a BALB/c mouse model of infection with aerosolised Burkholderia pseudomallei K96243 has been used to understand the immune response to infection in this model and verify other infection models that show rapid growth of bacteria, colonisation of tissues and periphery, induction of cytokines and influx of neutrophils. Uniquely, this study has also determined the association of B. pseudomallei to host cells in vivo using flow cytometric techniques. Neutrophils were found to be the predominant cell-type exhibiting B. pseudomallei antigens during infection and it is likely that bacteria have been internalised. This data confirms that neutrophils are likely to play an important and active role in fighting infection with B. pseudomallei.


Asunto(s)
Burkholderia pseudomallei/inmunología , Melioidosis/inmunología , Neutrófilos/inmunología , Infecciones del Sistema Respiratorio/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Infecciones del Sistema Respiratorio/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA