RESUMEN
Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.
Asunto(s)
Parásitos , Trypanosoma brucei brucei , Trypanosoma , Animales , Ratones , Trypanosoma brucei brucei/genética , Proteínas de la Membrana , Alanina , Proteómica , Glándulas Salivales/parasitología , Mamíferos , Glicoproteínas de MembranaRESUMEN
As a critical regulator of cell growth, the mechanistic target of rapamycin (mTOR) protein operates as part of two molecularly and functionally distinct complexes. Herein, we demonstrate that mTOR complex molecular composition varies in different somatic tissues. In astrocytes and neural stem cells, we identified G-protein-coupled receptor kinase-interacting protein 1 (GIT1) as a novel mTOR-binding protein, creating a unique mTOR complex lacking Raptor and Rictor. Moreover, GIT1 binding to mTOR is regulated by AKT activation and is essential for mTOR-mediated astrocyte survival. Together, these data reveal that mTOR complex function is partly dictated by its molecuflar composition in different cell types.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/citología , Astrocitos/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Supervivencia Celular/genética , Células Cultivadas , Activación Enzimática , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Unión Proteica , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genéticaRESUMEN
The closely related parasites Trypanosoma brucei, T. congolense, and T. vivax cause neglected tropical diseases collectively known as African Trypanosomiasis. A characteristic feature of bloodstream form T. brucei is the flagellum that is laterally attached to the side of the cell body. During the cell cycle, the new flagellum is formed alongside the old flagellum, with the new flagellum tip embedded within a mobile transmembrane junction called the groove. The molecular composition of the groove is currently unknown, which limits the analysis of this junction and assessment of its conservation in related trypanosomatids. Here, we identified 13 proteins that localize to the flagellar groove through a small-scale tagging screen. Functional analysis of a subset of these proteins by RNAi and gene deletion revealed three proteins, FCP4/TbKin15, FCP7, and FAZ45, that are involved in new flagellum tip attachment to the groove. Despite possessing orthologues of all 13 groove proteins, T. congolense and T. vivax did not assemble a canonical groove around the new flagellum tip according to 3D electron microscopy. This diversity in new flagellum tip attachment points to the rapid evolution of membrane-cytoskeleton structures that can occur without large changes in gene complement and likely reflects the niche specialization of each species.
Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Trypanosoma/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Flagelos/genética , Flagelos/metabolismo , Citoesqueleto/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
The formation and maintenance of an organism are highly dependent on the orderly control of cell growth, differentiation, death, and migration. These processes are tightly regulated by signaling cascades in which a limited number of molecules dictate these cellular events. While these signaling pathways are highly conserved across species and cell types, the functional outcomes that result from their engagement are specified by the context in which they are activated. Using the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome as an illustrative platform, we discuss how NF1/RAS signaling can create functional diversity at multiple levels (molecular, cellular, tissue, and genetic/genomic). As such, the ability of related molecules (e.g., K-RAS, H-RAS) to activate distinct effectors, as well as cell type- and tissue-specific differences in molecular composition and effector engagement, generate numerous unique functional effects. These variations, coupled with a multitude of extracellular cues and genomic/genetic changes that each modify the innate signaling properties of the cell, enable precise control of cellular physiology in both health and disease. Understanding these contextual influences is important when trying to dissect the underlying pathogenic mechanisms of cancer relevant to molecularly-targeted therapeutics.
Asunto(s)
Neoplasias/metabolismo , Transducción de Señal , Animales , Sitios Genéticos , Humanos , Modelos Biológicos , Mutación/genética , Neoplasias/genética , Proteínas ras/metabolismoRESUMEN
Neurofibromatosis type 1 (NF1) is a common neurogenetic condition characterized by significant clinical heterogeneity. A major barrier to developing precision medicine approaches for NF1 is an incomplete understanding of the factors that underlie its inherent variability. To determine the impact of the germline NF1 gene mutation on the optic gliomas frequently encountered in children with NF1, we developed genetically engineered mice harboring two representative NF1-patient-derived Nf1 gene mutations (c.2542G>C;p.G848R and c.2041C>T;p.R681X). We found that each germline Nf1 gene mutation resulted in different levels of neurofibromin expression. Importantly, only R681X(CKO) but not G848R(CKO), mice develop optic gliomas with increased optic nerve volumes, glial fibrillary acid protein immunoreactivity, proliferation and retinal ganglion cell death, similar to Nf1 conditional knockout mice harboring a neomycin insertion (neo) as the germline Nf1 gene mutation. These differences in optic glioma phenotypes reflect both cell-autonomous and stromal effects of the germline Nf1 gene mutation. In this regard, primary astrocytes harboring the R681X germline Nf1 gene mutation exhibit increased basal astrocyte proliferation (BrdU incorporation) indistinguishable from neo(CKO) astrocytes, whereas astrocytes with the G848R mutation have lower levels of proliferation. Evidence for paracrine effects from the tumor microenvironment were revealed when R681X(CKO) mice were compared with conventional neo(CKO) mice. Relative to neo(CKO) mice, the optic gliomas from R681X(CKO) mice had more microglia infiltration and JNK(Thr183/Tyr185) activation, microglia-produced Ccl5, and glial AKT(Thr308) activation. Collectively, these studies establish that the germline Nf1 gene mutation is a major determinant of optic glioma development and growth through by both tumor cell-intrinsic and stromal effects.
Asunto(s)
Astrocitos/patología , Mutación de Línea Germinal/genética , Neurofibromatosis 1/complicaciones , Neurofibromina 1/genética , Glioma del Nervio Óptico/patología , Nervio Óptico/patología , Animales , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Nervio Óptico/metabolismo , Glioma del Nervio Óptico/etiologíaRESUMEN
The simple body plan and semitranslucent cuticle of the Drosophila larva allow for imaging of structures close to the body wall within intact animals. These include sensory neurons, muscles, neuromuscular junctions, and some regions of the segmental nerve. However, imaging within an intact larva requires a strategy to immobilize the animal in a position that presents the structures within the working distance of the microscope objective. Although various methods have been implemented for Drosophila larvae, this protocol describes a simple and noninvasive method that makes use of the polydimethylsiloxane (PDMS) larva chip. This larva chip immobilizes animals without the use of anesthetics or changes in temperature, which alter neuronal physiology, making it suitable for calcium imaging of endogenous activity in live animals. The membrane is air-permeable. Animals robustly survive short periods of immobilization (up to 30 min) and can even survive longer time periods. Since animals recover well after the procedure, the same animal can be reimaged multiple times. This makes the method amenable to manipulations such as laser microsurgery, photobleaching, and photoconversion followed by imaging of outcomes of these manipulations over time.
RESUMEN
A fundamental feature of nervous systems is a highly specified synaptic connectivity between cells and the ability to adaptively change this connectivity through plasticity mechanisms. Plasticity mechanisms are highly relevant for responding to nervous system damage, and studies using nervous system injury paradigms in Drosophila (as well as other model organisms) have revealed conserved molecular pathways that are triggered by axon damage. Simple assays that introduce injuries to axons in either adult flies or larvae have proven to be particularly powerful for uncovering mechanisms of axonal degeneration and clearance. They have also been used to reveal requirements for regrowth of axons and dendrites, as well as signaling pathways that regulate cellular responses to nerve injury. Here we review commonly used and simple to carry out techniques that enable experimenters to study responses to axonal damage in either adult flies (following antennal transection) or larvae (following nerve crush to segmental nerves). Because axons and dendrites in the larval peripheral nervous system can be readily visualized through the translucent cuticle, another versatile method to probe injury responses is to focus high-energy laser light to a small and specific location in the animal. We therefore discuss a method for immobilizing intact larvae for imaging through the cuticle to carry out injury by pulse dye laser, which can be used to generate many different kinds of injuries and directed ablations within intact larvae. These techniques, combined with powerful genetic tools in Drosophila, make the fruit fly an excellent model system for studying the effects of injury and the mechanisms of axon degeneration, synapse plasticity, and immune response.
RESUMEN
The long length of axons makes them vulnerable to damage; hence, it is logical that nervous systems have evolved adaptive mechanisms for responding to axon damage. Studies in Drosophila melanogaster have identified evolutionarily conserved molecular pathways that enable axonal degeneration and regeneration of damaged axons and/or dendrites. This protocol describes a simple method for inducing nerve crush injury to motoneuron and sensory neuron axons in the peripheral (segmental) nerves in second- or early third-instar larvae. Small forceps are used to pinch the cuticle at a location that overlays the segmental nerves. Although the connective tissue of the nerves remains intact and the larva survives the injury, single motoneuron and sensory neuron axons incur a break in continuity at the damage site and then undergo Wallerian degeneration distal to the break. This degeneration includes the dismantling of neuromuscular junction (NMJ) synapses formed by the axons that incurred damage. With stereotyped anatomy and accessibility to structural and electrophysiological studies, the larval NMJ is a good model to characterize the cellular changes that occur in synapses undergoing degeneration and to identify conditions that can protect axons and synapses from degeneration.
RESUMEN
Neurons extend their axons and dendrites over long distances and rely on evolutionarily conserved mechanisms to maintain the cellular structure and function of neurites at a distance from their cell body. Neurites that lose connection with their cell body following damage or stressors to their cytoskeleton undergo a programmed self-destruction process akin to apoptosis but using different cellular machinery, termed Wallerian degeneration. While first described for vertebrate axons by Augustus Waller in 1850, key discoveries of the enzymes that regulate Wallerian degeneration were made through forward genetic screens in Drosophila melanogaster Powerful techniques for genetic manipulation and visualization of single neurons combined with simple methods for introducing axotomy (neuron severing) to certain neuron types in Drosophila have enabled the discovery and study of the cellular machinery responsible for Wallerian degeneration, in addition to mechanisms that enable clearance of the resulting debris. This protocol describes how to study the degeneration and clearance of axons from olfactory receptor neurons (ORNs). These peripheral neurons reside in the antennae and project axons to olfactory glomeruli of the anterior brain. Simple and nonlethal removal of antennae from adult flies causes axotomy of ORNs, and the fate of the injured axons can be readily visualized in a whole-mount dissected brain. This assay takes advantage of well-characterized genetic methods to robustly and specifically label subsets of ORNs. This method of neurite labeling and axotomy was the first axon injury paradigm to be developed in flies and is still regularly used due to its simplicity to perform, dissect, image, and analyze.
RESUMEN
Laser microsurgery is a robust method to ablate specific cells in the nervous system and probe the functional consequences of their loss in the animal. By introducing focal lesions to small locations in the animal, laser microsurgery also enables disruptions of specific connections within neuronal circuits and the study of how the nervous system responds to precise forms of damage (for instance, damage to specific axons or dendrites, which have been found to evoke different kinds of responses in neurons). The MicroPoint laser is a pulsed dye laser that can be mounted onto any standard microscope, hence is an affordable alternative to two-photon lasers for providing high powered focal ablations. This protocol describes how to use a MicroPoint laser ablation system to induce focal injuries in Drosophila larvae. This protocol guides a user who has access to a MicroPoint laser that has already been installed onto an appropriate microscope for high-resolution imaging and configured for laser ablation using Coumarin 440 dye. The protocol covers how to use the laser to carry out surgeries or ablation, how to change the laser dye and calibrate the power settings, and how to make sure the laser is properly focused. While the protocol provides an example of axotomy (axon severing) in the peripheral nervous system of Drosophila larvae, use of the MicroPoint system can be adapted to other focal surgeries in other organisms.
RESUMEN
This is the first description of a population of Iba1- and annexin A3-immunopositive cells residing in the peripheral olfactory nerves of adult rats and adult cats. Based on their ramified appearance, positive immunostaining for the monocytic markers Iba1 and annexin A3, and reactivity to bulbectomy (in adult rats), these cells found within the olfactory nerve fascicles of both mammalian species meet several important criteria for their designation as microglia/macrophages. These Iba1-/annexin A3-immunopositive cells may be uniquely positioned to protect against the potential spread of dangerous environmental xenobiotics (such as viruses and toxins) into the brain, where such pathogens may contribute to the development of neurological diseases, such Alzheimer's and Parkinson's diseases.
Asunto(s)
Macrófagos/fisiología , Microglía/fisiología , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/citología , Nervio Olfatorio/citología , Animales , Anexina A3/metabolismo , Proteínas de Unión al Calcio/metabolismo , Gatos , Macrófagos/metabolismo , Masculino , Proteínas de Microfilamentos , Microglía/metabolismo , Bulbo Olfatorio/lesiones , Mucosa Olfatoria/ultraestructura , Ratas , Ratas WistarRESUMEN
Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration and death in multiple models of injury and neurodegenerative diseases. This has spurred current consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context is DLK a friend or foe to neurons? Here, we review our current understanding of DLK's function and mechanisms in regulating both regenerative and degenerative responses to axonal damage and stress in the nervous system.
Asunto(s)
Axones/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Degeneración Nerviosa/enzimología , Regeneración Nerviosa/fisiología , Transducción de Señal/fisiología , Animales , HumanosRESUMEN
Glioblastoma (GBM) is the most common malignant brain tumor in adults, with a median survival of 15 months. These poor clinical outcomes have prompted the development of drugs that block neoplastic cancer cell growth; however, non-neoplastic cell-derived signals (chemokines and cytokines) in the tumor microenvironment may also represent viable treatment targets. One such chemokine, Ccl5, produced by low-grade tumor-associated microglia, is responsible for maintaining neurofibromatosis type 1 (NF1) mouse optic glioma growth in vivo. Since malignant gliomas may achieve partial independence from growth regulatory factors produced by non-neoplastic cells in the tumor microenvironment by producing the same cytokines secreted by the stromal cells in their low-grade counterparts, we tested the hypothesis that CCL5/CCL5-receptor signaling in glioblastoma creates an autocrine circuit important for high-grade glioma growth. Herein, we demonstrate that increased CCL5 expression was restricted to both human and mouse mesenchymal GBM (M-GBM), a molecular subtype characterized by NF1 loss. We further show that the NF1 protein, neurofibromin, negatively regulates Ccl5 expression through suppression of AKT/mTOR signaling. Consistent with its role as a glioblastoma growth regulator, Ccl5 knockdown in M-GBM cells reduces M-GBM cell survival in vitro, and increases mouse glioblastoma survival in vivo. Finally, we demonstrate that Ccl5 operates through an unconventional CCL5 receptor, CD44, to inhibit M-GBM apoptosis. Collectively, these findings reveal an NF1-dependent CCL5-mediated pathway that regulates M-GBM cell survival, and support the concept that paracrine factors important for low-grade glioma growth can be usurped by high-grade tumors to create autocrine regulatory circuits that maintain malignant glioma survival.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Quimiocina CCL5/metabolismo , Glioblastoma/metabolismo , Neurofibromina 1/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Trasplante de Neoplasias , Transducción de Señal , Microambiente TumoralRESUMEN
BACKGROUND: Serum biomarkers may play a role in prognostication after cardiac arrest. This study was designed to assess the feasibility of using two-dimensional gel electrophoresis (2D-GE) coupled with mass spectrometry (MS) as a proteomic strategy to identify novel biomarkers that may predict neurological recovery. METHODS: Adult comatose survivors of ventricular fibrillation or pulseless ventricular tachycardia were considered eligible. Blood was collected and serum separated within 6 h of hospital admission and then at 24 h afterwards. Neurological outcome was assessed at 3 months with the Cerebral Performance Category (CPC) score. Serum was assessed with 2D-GE with and without prior depletion of high abundance proteins. Protein differences between patients with good (CPC 1,2) vs. poor (CPC 3-5) neurological recovery were subsequently identified with MS. RESULTS: From August 2010 to June 2014, 11 patients meeting eligibility criteria were recruited, from which serum was available from 9 (5 with good neurological outcome). On non-depleted serum, only high abundance acute phase proteins such as haptoglobin, cell-free hemoglobin, albumin, and amyloid were detected in both patients with good and poor neurological recovery. Following depletion of high abundance proteins, proteins identified by MS in both patient populations were the acute phase reactants c-reactive protein and retinol binding protein-4. Proteins uniquely identified in the serum of patients with poor neurological recovery included 14-3-3 (epsilon and zeta isoforms) and muskelin. CONCLUSIONS: Two-D-GE coupled with MS is a feasible strategy to facilitate the identification of novel predictive biomarkers. The presence of muskelin and 14-3-3 in the serum of patients with poor neurological prognosis warrants further investigation.
RESUMEN
Aberrant sympathetic sprouting is seen in the uninjured trigeminal ganglia of transgenic mice that ectopically express nerve growth factor under the control of the glial fibrillary acidic protein promoter. These sympathetic axons form perineuronal plexuses around a subset of sensory somata in 2- to 3-month-old transgenic mice. Here, we show that aged transgenic mice (i.e., 11-14 and 16-18 months old) have dystrophic sympathetic plexuses (i.e., increased densities of swollen axons), and that satellite glial cells, specifically those in contact with dystrophic plexuses in the aged mice display strong immunostaining for tumor necrosis factor alpha. The colocalization of dystrophic plexuses and reactive satellite glial cells in the aged mice coincides with degenerative features in the enveloped sensory somata. Collectively, these novel results show that, with advancing age, sympathetic plexuses undergo dystrophic changes that heighten satellite glial cell reactivity and that together these cellular events coincide with neuronal degeneration.
Asunto(s)
Envejecimiento/genética , Envejecimiento/patología , Ganglios Simpáticos/patología , Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Ganglio del Trigémino/patología , Animales , Axones/patología , Proteína Ácida Fibrilar de la Glía/fisiología , Inmunohistoquímica , Ratones Transgénicos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Olfactory ensheathing cells (OECs) are the chief glial population of the mammalian olfactory nervous system, residing in the olfactory mucosa and at the surface of the olfactory bulb. We investigated the neurochemical features of OECs in a variety of mammalian species (including adult hamsters, rabbits, monkeys, and mice, as well as fetal pigs) using three biomarkers: α-smooth muscle actin (αSMA), S100ß, and glial fibrillary acidic protein (GFAP). Mucosal and bulbar OECs from all five mammalian species express S100ß. Both mucosal and bulbar OECs of monkeys express αSMA, yet only bulbar OECs of hamsters and only mucosal OECs of rabbits express αSMA as well. Mucosal OECs, but not bulbar OECs, also express GFAP in hamsters and monkeys; mice, by comparison, have only a sparse population of OECs expressing GFAP. Though αSMA immunostaining is not detected in OECs of adult mice, GFAP-expressing mucosal OECs isolated from adult mice do coexpress αSMA in vitro. Moreover, mucosal OECs from adult mutant mice lacking αSMA expression display perturbed cellular morphology (i.e., fewer cytoplasmic processes extending among the hundreds of olfactory axons in the olfactory nerve fascicles and nuclei having degenerative features). In sum, these findings highlight the efficacy of αSMA and S100ß as biomarkers of OECs from a variety of mammalian species. These observations provide definitive evidence that mammalian OECs express the structural protein αSMA (at various levels of detection), which appears to play a pivotal role in their ensheathment of olfactory axons.
Asunto(s)
Actinas/biosíntesis , Neuroglía/metabolismo , Bulbo Olfatorio/citología , Mucosa Olfatoria/citología , Animales , Biomarcadores/metabolismo , Cricetinae , Haplorrinos , Inmunohistoquímica , Macaca fascicularis , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/metabolismo , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
To identify potential biomarkers associated with Alzheimer's disease (AD)-like neuropathologies in the murine brain, we conducted proteomic analyses of neocortices from TgCRND8 mice. Here we found that phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is expressed at higher levels in the neocortical proteomes from 6-month old TgCRND8 mice, as compared to non-transgenic mice. Immunostaining for PEA-15 revealed reactive astrocytes associated with the neocortical amyloid plaques in TgCRND8 mice and in post-mortem human AD brains. This is the first report of increased phosphoprotein enriched in astrocytes (PEA-15) expression in reactive astrocytes of an AD mouse model and human AD brains.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Astrocitos/fisiología , Encéfalo/metabolismo , Fosfoproteínas/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Ratones , Ratones TransgénicosRESUMEN
Elevating levels of nerve growth factor (NGF) can have pronounced effects on the survival and maintenance of distinct populations of neurons. We have generated a line of transgenic mice in which NGF is expressed under the control of the smooth muscle α-actin promoter. These transgenic mice have augmented levels of NGF protein in the descending colon and urinary bladder, so these tissues display increased densities of NGF-sensitive sympathetic efferents and sensory afferents. Here we provide a thorough examination of sympathetic and sensory axonal densities in the descending colon and urinary bladder of NGF transgenic mice with and without the expression of the p75 neurotrophin receptor (p75NTR). In response to elevated NGF levels, sympathetic axons (immunostained for tyrosine hydroxylase) undergo robust collateral sprouting in the descending colon and urinary bladder of adult transgenic mice (i.e., those tissues having smooth muscle cells); this sprouting is not augmented in the absence of p75NTR expression. As for sensory axons (immunostained for calcitonin gene-related peptide) in the urinary bladders of transgenic mice, fibers undergo sprouting that is further increased in the absence of p75NTR expression. Sympathetic axons are also seen invading the sensory ganglia of transgenic mice; these fibers form perineuronal plexi around a subpopulation of sensory somata. Our results reveal that elevated levels of NGF in target tissues stimulate sympathetic and sensory axonal sprouting and that an absence of p75NTR by sensory afferents (but not by sympathetic efferents) leads to a further increase of terminal arborization in certain NGF-rich peripheral tissues.
Asunto(s)
Músculo Liso/metabolismo , Factor de Crecimiento Nervioso/biosíntesis , Receptor de Factor de Crecimiento Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Axones/fisiología , Western Blotting , Recuento de Células , Colon/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Transgénicos , Fibras Nerviosas/metabolismo , Factor de Crecimiento Nervioso/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Vejiga Urinaria/metabolismoRESUMEN
Nerve growth factor (NGF) and its precursor proNGF are perhaps the best described growth factors of the mammalian nervous system. There remains, however, a paucity of information regarding the precise cellular sites of proNGF/NGF synthesis. Here we report the generation of transgenic mice in which the NGF promoter controls the ectopic synthesis of enhanced green fluorescent protein (EGFP). These transgenic mice provide an unprecedented resolution of both neural cells (e.g., neocortical and hippocampal neurons) and non-neural cells (e.g., renal interstitial cells and thymic reticular cells) that display NGF promoter activity from postnatal development to adulthood. Moreover, the transgene is inducible by injury. At 2 days after sciatic nerve ligation, a robust population of EGFP-positive cells is seen in the proximal nerve stump. These transgenic mice offer novel insights into the cellular sites of NGF promoter activity and can be used as models for investigating the regulation of proNGF/NGF expression after injury.
Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Regiones Promotoras Genéticas , Animales , Encéfalo/citología , Encéfalo/metabolismo , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Transgénicos , ARN Mensajero/metabolismo , Nervio Ciático/citología , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Distribución Tisular , TransgenesRESUMEN
Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem/progenitor cells, fate-restricted neural/glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same "type" exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.