Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Pharmacol ; 173(21): 3080-3087, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27417329

RESUMEN

BACKGROUND AND PURPOSE: Asthma presents as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyper-reactivity (AHR). Spleen tyrosine kinase (Syk) mediates allergen-induced mast cell degranulation, a central component of allergen-induced inflammation and AHR. However, the role of Syk in IgE-mediated constriction of human small airways remains unknown. In this study, we addressed whether selective inhibition of Syk attenuates IgE-mediated constriction and mast cell mediator release in human small airways. EXPERIMENTAL APPROACH: Human precision cut lung slices (hPCLS) ex vivo derived from non-asthmatic donors were incubated overnight with human IgE, dexamethasone, montelukast, antihistamines or a selective Syk inhibitor (SYKi). High-affinity IgE receptor (FcεRI) activation by anti-IgE cross-linking was performed, and constriction and mediator release measured. Airway constriction was normalized to that induced by maximal carbachol stimulation. Syk expression (determined by qPCR and immunoblot) was also evaluated in human primary airway smooth muscle (HASM) cells to determine whether Syk directly modulates HASM function. KEY RESULTS: While dexamethasone had little effect on FcεR-mediated contraction, montelukast or antihistamines partially attenuated the response. SYKi abolished anti-IgE-mediated contraction and suppressed the release of mast cell or basophil mediators from the IgE-treated hPCLS. In contrast, SYKi had little effect on the non-allergic contraction induced by carbachol. Syk mRNA and protein were undetectable in HASM cells. CONCLUSIONS AND IMPLICATIONS: A selective Syk inhibitor, but not corticosteroids, abolished FcεR-mediated contraction in human small airways ex vivo. The mechanism involved FcεRI receptor activation on mast cells or basophils that degranulate causing airway constriction, rather than direct actions on HASM.


Asunto(s)
Inmunoglobulina E/inmunología , Pulmón/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Bazo/enzimología , Células Cultivadas , Humanos , Técnicas In Vitro , Pulmón/citología , Pulmón/enzimología , Pulmón/inmunología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/inmunología , Músculo Liso/enzimología , Músculo Liso/inmunología , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/metabolismo
2.
PLoS One ; 10(2): e0118286, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706956

RESUMEN

OBJECTIVES: Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model. METHODS: Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively. MAIN RESULTS: ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1). CONCLUSIONS: ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.


Asunto(s)
Asma/genética , Asma/virología , Diferenciación Celular/genética , Células Epiteliales/virología , Infecciones por Picornaviridae/genética , Sistema Respiratorio/virología , Adolescente , Adulto , Células Cultivadas , Quimiocinas/genética , Niño , Femenino , Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/virología , Masculino , Persona de Mediana Edad , Infecciones por Picornaviridae/virología , Rhinovirus , Transducción de Señal/genética
3.
Crit Rev Eukaryot Gene Expr ; 13(2-4): 265-75, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14696973

RESUMEN

Osteoactivin (OA) is a novel protein identified by mRNA differential display using bone from osteopetrotic versus normal rats. Bioinformatic analysis showed that OA cDNA has an open reading frame of 1716 bp encoding a protein of 572 aa, the first 21 aa constitute a signal peptide. OA sequence analysis also demonstrated 13 putative N-glycosylation sites suggestive of a heavily glycosylated protein. In this study, we localized OA protein in primary osteoblast culture by immunofluorescent staining and Western blot analysis. Primary osteoblast cultures pass through three stages: proliferation from day 1 to 7, matrix formation from day 7 to 14, and matrix mineralization from day 14 to 21. OA protein was detected at all stages examined, with maximal expression at 3 weeks when osteoblasts are terminally differentiated. Using the Chariot transfection reagent as a vehicle to deliver anti-OA antibody into the cells, we demonstrated that anti-OA antibody significantly inhibited osteoblast differentiation markers, including alkaline phosphatase activity, nodule formation, osteocalcin production, and calcium deposition, without affecting cell proliferation or viability. These data suggest that OA is an osteoblast-related protein that plays an important role in the regulation of osteoblast differentiation and function.


Asunto(s)
Anticuerpos/química , Osteoblastos/citología , Proteínas/química , Fosfatasa Alcalina/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Huesos/metabolismo , Calcio/metabolismo , Diferenciación Celular , División Celular , Supervivencia Celular , Células Cultivadas , Biología Computacional , ADN Complementario/metabolismo , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Glicosilación , Glicoproteínas de Membrana , Microscopía Fluorescente , Sistemas de Lectura Abierta , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Señales de Clasificación de Proteína , Proteínas/inmunología , ARN Mensajero/metabolismo , Ratas , Sales de Tetrazolio/farmacología , Tiazoles/farmacología , Factores de Tiempo , Transfección
4.
Proc Natl Acad Sci U S A ; 104(25): 10619-24, 2007 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-17537919

RESUMEN

Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2-/- mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture. We find that PYK2-/- mice have high bone mass resulting from an unexpected increase in bone formation. Consistent with the in vivo findings, mouse bone marrow cultures show that PYK2 deficiency enhances differentiation and activity of osteoprogenitor cells, as does expressing a PYK2-specific short hairpin RNA or dominantly interfering proteins in human mesenchymal stem cells. Furthermore, the daily administration of a small-molecule PYK2 inhibitor increases bone formation and protects against bone loss in ovariectomized rats, an established preclinical model of postmenopausal osteoporosis. In summary, we find that PYK2 regulates the differentiation of early osteoprogenitor cells across species and that inhibitors of the PYK2 have potential as a bone anabolic approach for the treatment of osteoporosis.


Asunto(s)
Quinasa 2 de Adhesión Focal/fisiología , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteogénesis/fisiología , Osteoporosis/terapia , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Diferenciación Celular , Células Cultivadas , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Ovariectomía , Ratas , Ratas Sprague-Dawley
5.
J Cell Physiol ; 196(1): 51-62, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12767040

RESUMEN

Connective tissue growth factor (CTGF) is a secreted, extracellular matrix-associated signaling protein that regulates diverse cellular functions. In vivo, CTGF is expressed in many tissues with highest levels in the kidney and brain. The purpose of this study was twofold; first, to localize CTGF in normal bone in vivo during growth and repair, and second, to examine CTGF expression and function in primary osteoblast cultures in vitro and test its effect on bone formation in vivo. Northern and Western blot analyses confirmed that CTGF is expressed in normal long bones during the period of growth or modeling. In situ hybridization and immunohistochemical analysis demonstrated intense staining for CTGF mRNA and protein in osteoblasts lining metaphyseal trabeculae. Examination of CTGF expression in the fracture callus demonstrated that it was primarily localized in osteoblasts lining active, osteogenic surfaces. In primary osteoblast cultures, CTGF mRNA levels demonstrated a bimodal pattern of expression, being high during the peak of the proliferative period, abating as the cells became confluent, and increasing to peak levels and remaining high during mineralization. This pattern suggests that CTGF may play a role in osteoblast proliferation and differentiation as previously demonstrated for fibroblasts and chondrocytes. Treatment of primary osteoblast cultures with anti-CTGF neutralizing antibody caused a dose-dependent inhibition of nodule formation and mineralization. Treatment of primary osteoblast cultures with recombinant CTGF (rCTGF) caused an increase in cell proliferation, alkaline phosphatase activity, and calcium deposition, thereby establishing a functional connection between CTGF and osteoblast differentiation. In vivo delivery of rCTGF into the femoral marrow cavity induced osteogenesis that was associated with increased angiogenesis. This study clearly shows that CTGF is important for osteoblast development and function both in vitro and in vivo.


Asunto(s)
Huesos/citología , Huesos/metabolismo , Diferenciación Celular , Proteínas Inmediatas-Precoces/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Animales , Desarrollo Óseo , División Celular , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo , Modelos Animales de Enfermedad , Fracturas Óseas/metabolismo , Regulación de la Expresión Génica , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intercelular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA