Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 23(4): 215-228, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983970

RESUMEN

The versatility of RNA in sensing and interacting with small molecules, proteins and other nucleic acids while encoding genetic instructions for protein translation makes it a powerful substrate for engineering biological systems. RNA devices integrate cellular information sensing, processing and actuation of specific signals into defined functions and have yielded programmable biological systems and novel therapeutics of increasing sophistication. However, challenges centred on expanding the range of analytes that can be sensed and adding new mechanisms of action have hindered the full realization of the field's promise. Here, we describe recent advances that address these limitations and point to a significant maturation of synthetic RNA-based devices.


Asunto(s)
Ingeniería Genética , ARN , Regulación de la Expresión Génica , ARN/química , ARN/genética
2.
Nat Rev Mol Cell Biol ; 15(4): 289-94, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24622617

RESUMEN

Synthetic biology, despite still being in its infancy, is increasingly providing valuable information for applications in the clinic, the biotechnology industry and in basic molecular research. Both its unique potential and the challenges it presents have brought together the expertise of an eclectic group of scientists, from cell biologists to engineers. In this Viewpoint article, five experts discuss their views on the future of synthetic biology, on its main achievements in basic and applied science, and on the bioethical issues that are associated with the design of new biological systems.


Asunto(s)
Biotecnología , Ingeniería Genética , Biología Sintética/normas , Biología de Sistemas , Guías como Asunto , Humanos , Biología Sintética/ética , Biología Sintética/legislación & jurisprudencia
3.
Cell ; 144(6): 855-9, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21414477

RESUMEN

Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.


Asunto(s)
Biología Sintética , Biología de Sistemas , Simulación por Computador , Biología Sintética/métodos , Biología Sintética/tendencias , Biología de Sistemas/métodos , Biología de Sistemas/tendencias
4.
Nature ; 585(7826): 614-619, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879484

RESUMEN

Tropane alkaloids from nightshade plants are neurotransmitter inhibitors that are used for treating neuromuscular disorders and are classified as essential medicines by the World Health Organization1,2. Challenges in global supplies have resulted in frequent shortages of these drugs3,4. Further vulnerabilities in supply chains have been revealed by events such as the Australian wildfires5 and the COVID-19 pandemic6. Rapidly deployable production strategies that are robust to environmental and socioeconomic upheaval7,8 are needed. Here we engineered baker's yeast to produce the medicinal alkaloids hyoscyamine and scopolamine, starting from simple sugars and amino acids. We combined functional genomics to identify a missing pathway enzyme, protein engineering to enable the functional expression of an acyltransferase via trafficking to the vacuole, heterologous transporters to facilitate intracellular routing, and strain optimization to improve titres. Our integrated system positions more than twenty proteins adapted from yeast, bacteria, plants and animals across six sub-cellular locations to recapitulate the spatial organization of tropane alkaloid biosynthesis in plants. Microbial biosynthesis platforms can facilitate the discovery of tropane alkaloid derivatives as new therapeutic agents for neurological disease and, once scaled, enable robust and agile supply of these essential medicines.


Asunto(s)
Alcaloides/biosíntesis , Alcaloides/provisión & distribución , Hiosciamina/biosíntesis , Saccharomyces cerevisiae/metabolismo , Escopolamina/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Atropa belladonna/enzimología , Derivados de Atropina/metabolismo , Transporte Biológico , Datura/enzimología , Glucósidos/biosíntesis , Glucósidos/metabolismo , Hiosciamina/provisión & distribución , Lactatos/metabolismo , Ligasas/genética , Ligasas/metabolismo , Modelos Moleculares , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Ingeniería de Proteínas , Saccharomyces cerevisiae/genética , Escopolamina/provisión & distribución , Vacuolas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(33): e2205848119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939674

RESUMEN

Tetrahydropapaverine (THP) and papaverine are plant natural products with clinically significant roles. THP is a precursor in the production of the drugs atracurium and cisatracurium, and papaverine is used as an antispasmodic during vascular surgery. In recent years, metabolic engineering advances have enabled the production of natural products through heterologous expression of pathway enzymes in yeast. Heterologous biosynthesis of THP and papaverine could play a role in ensuring a stable supply of these clinically significant products. Biosynthesis of THP and papaverine has not been achieved to date, in part because multiple pathway enzymes have not been elucidated. Here, we describe the development of an engineered yeast strain for de novo biosynthesis of THP. The production of THP is achieved through heterologous expression of two enzyme variants with activity on nonnative substrates. Through protein engineering, we developed a variant of N-methylcoclaurine hydroxylase with activity on coclaurine, enabling de novo norreticuline biosynthesis. Similarly, we developed a variant of scoulerine 9-O-methyltransferase capable of O-methylating 1-benzylisoquinoline alkaloids at the 3' position, enabling de novo THP biosynthesis. Flux through the heterologous pathway was improved by knocking out yeast multidrug resistance transporters and optimization of media conditions. Overall, strain engineering increased the concentration of biosynthesized THP 600-fold to 121 µg/L. Finally, we demonstrate a strategy for papaverine semisynthesis using hydrogen peroxide as an oxidizing agent. Through optimizing pH, temperature, reaction time, and oxidizing agent concentration, we demonstrated the ability to produce semisynthesized papaverine through oxidation of biosynthesized THP.


Asunto(s)
Productos Biológicos , Papaverina , Ingeniería de Proteínas , Saccharomyces cerevisiae , Productos Biológicos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Peróxido de Hidrógeno/química , Oxidantes/química , Papaverina/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 119(49): e2215372119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442128

RESUMEN

Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Coca , Cocaína , Solanaceae , Saccharomyces cerevisiae , Tropanos , Solanaceae/genética , Aminas
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34140414

RESUMEN

Microbial biosynthesis of plant natural products (PNPs) can facilitate access to valuable medicinal compounds and derivatives. Such efforts are challenged by metabolite transport limitations, which arise when complex plant pathways distributed across organelles and tissues are reconstructed in unicellular hosts without concomitant transport machinery. We recently reported an engineered yeast platform for production of the tropane alkaloid (TA) drugs hyoscyamine and scopolamine, in which product accumulation is limited by vacuolar transport. Here, we demonstrate that alleviation of transport limitations at multiple steps in an engineered pathway enables increased production of TAs and screening of useful derivatives. We first show that supervised classifier models trained on a tissue-delineated transcriptome from the TA-producing plant Atropa belladonna can predict TA transporters with greater efficacy than conventional regression- and clustering-based approaches. We demonstrate that two of the identified transporters, AbPUP1 and AbLP1, increase TA production in engineered yeast by facilitating vacuolar export and cellular reuptake of littorine and hyoscyamine. We incorporate four different plant transporters, cofactor regeneration mechanisms, and optimized growth conditions into our yeast platform to achieve improvements in de novo hyoscyamine and scopolamine production of over 100-fold (480 µg/L) and 7-fold (172 µg/L). Finally, we leverage computational tools for biosynthetic pathway prediction to produce two different classes of TA derivatives, nortropane alkaloids and tropane N-oxides, from simple precursors. Our work highlights the importance of cellular transport optimization in recapitulating complex PNP biosyntheses in microbial hosts and illustrates the utility of computational methods for gene discovery and expansion of heterologous biosynthetic diversity.


Asunto(s)
Vías Biosintéticas , Ingeniería Metabólica , Metaboloma , Saccharomyces cerevisiae/metabolismo , Tropanos/metabolismo , Transporte Biológico , Simulación por Computador , Oxidación-Reducción , Filogenia , Especificidad por Sustrato
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903659

RESUMEN

Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.


Asunto(s)
Bencilisoquinolinas/metabolismo , Isoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/biosíntesis , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Fermentación , Ingeniería Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ingeniería de Proteínas , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(17): E3922-E3931, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29610307

RESUMEN

Microbial biosynthesis of plant natural products from simple building blocks is a promising approach toward scalable production and modification of high-value compounds. The pathway for biosynthesis of noscapine, a potential anticancer compound, from canadine was recently elucidated as a 10-gene cluster from opium poppy. Here we demonstrate the de novo production of noscapine in Saccharomyces cerevisiae, through the reconstruction of a biosynthetic pathway comprising over 30 enzymes from plants, bacteria, mammals, and yeast itself, including 7 plant endoplasmic reticulum (ER)-localized enzymes. Optimization directed to tuning expression of pathway enzymes, host endogenous metabolic pathways, and fermentation conditions led to an over 18,000-fold improvement from initial noscapine titers to ∼2.2 mg/L. By feeding modified tyrosine derivatives to the optimized noscapine-producing strain we further demonstrated microbial production of halogenated benzylisoquinoline alkaloids. This work highlights the potential for microbial biosynthetic platforms to support the synthesis of valuable and novel alkaloid compounds, which can advance alkaloid-based drug discovery and development.


Asunto(s)
Hidrocarburos Halogenados/metabolismo , Ingeniería Metabólica , Noscapina/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
10.
Nucleic Acids Res ; 46(3): 1541-1552, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29244152

RESUMEN

As molecular and cellular therapies advance in the clinic, the role of genetic regulation is becoming increasingly important for controlling therapeutic potency and safety. The emerging field of mammalian synthetic biology provides promising tools for the construction of regulatory platforms that can intervene with endogenous pathways and control cell behavior. Recent work has highlighted the development of synthetic biological systems that integrate sensing of molecular signals to regulated therapeutic function in various disease settings. However, the toxicity and limited dosing of currently available molecular inducers have largely inhibited translation to clinical settings. In this work, we developed synthetic microRNA-based genetic systems that are controlled by the pharmaceutical drug leucovorin, which is readily available and safe for prolonged administration in clinical settings. We designed microRNA switches to target endogenous cytokine receptor subunits (IL-2Rß and γc) that mediate various signaling pathways in T cells. We demonstrate the function of these control systems by effectively regulating T cell proliferation with the drug input. Each control system produced unique functional responses, and combinatorial targeting of multiple receptor subunits exhibited greater repression of cell growth. This work highlights the potential use of drug-responsive genetic control systems to improve the management and safety of cellular therapeutics.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Factores Inmunológicos/farmacología , Subunidad gamma Común de Receptores de Interleucina/genética , Subunidad beta del Receptor de Interleucina-2/genética , Leucovorina/farmacología , MicroARNs/farmacología , Linfocitos T/efectos de los fármacos , Animales , Aptámeros de Nucleótidos/síntesis química , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/farmacología , Emparejamiento Base , Secuencia de Bases , Línea Celular , Proliferación Celular/genética , Citocinas/genética , Citocinas/inmunología , Relación Dosis-Respuesta Inmunológica , Regulación de la Expresión Génica , Subunidad gamma Común de Receptores de Interleucina/antagonistas & inhibidores , Subunidad gamma Común de Receptores de Interleucina/inmunología , Subunidad beta del Receptor de Interleucina-2/antagonistas & inhibidores , Subunidad beta del Receptor de Interleucina-2/inmunología , Ratones , MicroARNs/síntesis química , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Transducción de Señal , Linfocitos T/citología , Linfocitos T/inmunología , Transfección
11.
Mol Cell ; 43(6): 915-26, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925380

RESUMEN

RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors.


Asunto(s)
Ingeniería Genética/métodos , ARN/química , Biotecnología/tendencias , Regulación de la Expresión Génica , Ingeniería Genética/tendencias , Modelos Biológicos , Modelos Moleculares , ARN/fisiología
12.
Nat Prod Rep ; 35(9): 902-920, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29897091

RESUMEN

Covering: 2006 to 2018 Phytochemicals are important sources for the discovery and development of agricultural and pharmaceutical compounds, such as pesticides and medicines. However, these compounds are typically present in low abundance in nature, and the biosynthetic pathways for most phytochemicals are not fully elucidated. Heterologous production of phytochemicals in plant, bacterial, and yeast hosts has been pursued as a potential approach to address sourcing issues associated with many valuable phytochemicals, and more recently has been utilized as a tool to aid in the elucidation of plant biosynthetic pathways. Due to the structural complexity of certain phytochemicals and the associated biosynthetic pathways, reconstitution of plant pathways in heterologous hosts can encounter numerous challenges. Synthetic biology approaches have been developed to address these challenges in areas such as precise control over heterologous gene expression, improving functional expression of heterologous enzymes, and modifying central metabolism to increase the supply of precursor compounds into the pathway. These strategies have been applied to advance plant pathway reconstitution and phytochemical production in a wide variety of heterologous hosts. Here, we review synthetic biology strategies that have been recently applied to advance complex phytochemical production in heterologous hosts.


Asunto(s)
Bacterias/metabolismo , Fitoquímicos/metabolismo , Plantas/metabolismo , Biología Sintética/métodos , Levaduras/metabolismo , Bacterias/genética , Técnicas Biosensibles , Técnicas de Cocultivo , Enzimas/genética , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Microorganismos Modificados Genéticamente , Fitoquímicos/química , Fitoquímicos/genética , Plantas/genética , Levaduras/genética
13.
Nat Methods ; 12(10): 989-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26258292

RESUMEN

Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary-interaction RNA devices performed better in terms of gene silencing, activation ratio and ligand sensitivity than optimized RNA devices that rely on secondary-structure changes. We applied our method to build biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate the underlying sequence-structure-function relationships that empower rational design of complex biomolecules.


Asunto(s)
Aptámeros de Nucleótidos/química , Ingeniería Genética/métodos , Riboswitch/genética , Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles , Interpretación Estadística de Datos , Citometría de Flujo/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Biblioteca de Genes , Proteínas Fluorescentes Verdes/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ligandos , Nepovirus/genética , ARN Catalítico/química , Resonancia por Plasmón de Superficie , Teofilina/metabolismo , Teofilina/farmacología
14.
Nucleic Acids Res ; 44(7): 2987-99, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26969733

RESUMEN

The past decade of synthetic biology research has witnessed numerous advances in the development of tools and frameworks for the design and characterization of biological systems. Researchers have focused on the use of RNA for gene expression control due to its versatility in sensing molecular ligands and the relative ease by which RNA can be modeled and designed compared to proteins. We review the recent progress in the field with respect to RNA-based genetic devices that are controlled through small molecule and protein interactions. We discuss new approaches for generating and characterizing these devices and their underlying components. We also highlight immediate challenges, future directions and recent applications of synthetic RNA devices in engineered biological systems.


Asunto(s)
Regulación de la Expresión Génica , Ingeniería Genética/métodos , Secuencias Reguladoras de Ácido Ribonucleico , Aptámeros de Nucleótidos , Simulación por Computador , Ingeniería Metabólica/métodos , Riboswitch , Técnica SELEX de Producción de Aptámeros
15.
Nat Methods ; 11(11): 1147-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25218181

RESUMEN

Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of ß-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética , MicroARNs/genética , Interferencia de ARN , beta Catenina/metabolismo , Animales , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Levivirus/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Vía de Señalización Wnt/genética , beta Catenina/genética
16.
Metab Eng ; 38: 191-203, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27519552

RESUMEN

Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270µg/L, 61µg/L, and 3700µg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Vías Biosintéticas/genética , Cafeína/biosíntesis , Coffea/fisiología , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/fisiología , Xantinas/metabolismo , Cafeína/aislamiento & purificación , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xantinas/aislamiento & purificación
17.
Nat Chem Biol ; 10(10): 837-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25151135

RESUMEN

Opiates and related molecules are medically essential, but their production via field cultivation of opium poppy Papaver somniferum leads to supply inefficiencies and insecurity. As an alternative production strategy, we developed baker's yeast Saccharomyces cerevisiae as a microbial host for the transformation of opiates. Yeast strains engineered to express heterologous genes from P. somniferum and bacterium Pseudomonas putida M10 convert thebaine to codeine, morphine, hydromorphone, hydrocodone and oxycodone. We discovered a new biosynthetic branch to neopine and neomorphine, which diverted pathway flux from morphine and other target products. We optimized strain titer and specificity by titrating gene copy number, enhancing cosubstrate supply, applying a spatial engineering strategy and performing high-density fermentation, which resulted in total opioid titers up to 131 mg/l. This work is an important step toward total biosynthesis of valuable benzylisoquinoline alkaloid drug molecules and demonstrates the potential for developing a sustainable and secure yeast biomanufacturing platform for opioids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Codeína/biosíntesis , Morfina/biosíntesis , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas putida/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Bacterianas/genética , Dosificación de Gen , Expresión Génica , Hidrocodona/análogos & derivados , Hidrocodona/metabolismo , Hidromorfona/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas , Oxicodona/metabolismo , Papaver/genética , Proteínas de Plantas/genética , Pseudomonas putida/genética , Saccharomyces cerevisiae/genética , Tebaína/metabolismo
18.
Nucleic Acids Res ; 42(19): 12306-21, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25274734

RESUMEN

Genetic devices that directly detect and respond to intracellular concentrations of proteins are important synthetic biology tools, supporting the design of biological systems that target, respond to or alter specific cellular states. Here, we develop ribozyme-based devices that respond to protein ligands in two eukaryotic hosts, yeast and mammalian cells, to regulate the expression of a gene of interest. Our devices allow for both gene-ON and gene-OFF response upon sensing the protein ligand. As part of our design process, we describe an in vitro characterization pipeline for prescreening device designs to identify promising candidates for in vivo testing. The in vivo gene-regulatory activities in the two types of eukaryotic cells correlate with in vitro cleavage activities determined at different physiologically relevant magnesium concentrations. Finally, localization studies with the ligand demonstrate that ribozyme switches respond to ligands present in the nucleus and/or cytoplasm, providing new insight into their mechanism of action. By extending the sensing capabilities of this important class of gene-regulatory device, our work supports the implementation of ribozyme-based devices in applications requiring the detection of protein biomarkers.


Asunto(s)
Regulación de la Expresión Génica , Proteínas/análisis , ARN Catalítico/química , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Magnesio , Conformación de Ácido Nucleico , ARN Catalítico/metabolismo , Levaduras/genética
19.
Metab Eng ; 30: 96-104, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25981946

RESUMEN

Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization.


Asunto(s)
Alcaloides , Sistema Enzimático del Citocromo P-450 , Ingeniería Metabólica/métodos , Proteínas de Plantas , Alcaloides/biosíntesis , Alcaloides/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Metab Eng ; 31: 74-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26166409

RESUMEN

Microbial biosynthesis for plant-based natural products, such as the benzylisoquinoline alkaloids (BIAs), has the potential to address limitations in plant-based supply of established drugs and make new molecules available for drug discovery. While yeast strains have been engineered to produce a variety of downstream BIAs including the opioids, these strains have relied on feeding an early BIA substrate. We describe the de novo synthesis of the major BIA branch point intermediate reticuline via norcoclaurine in Saccharomyces cerevisiae. Modifications were introduced into yeast central metabolism to increase supply of the BIA precursor tyrosine, allowing us to achieve a 60-fold increase in production of the early benzylisoquinoline scaffold from fed dopamine with no supply of exogenous tyrosine. Yeast strains further engineered to express a mammalian tyrosine hydroxylase, four mammalian tetrahydrobiopterin biosynthesis and recycling enzymes, and a bacterial DOPA decarboxylase produced norcoclaurine de novo. We further increased production of early benzylisoquinoline scaffolds by 160-fold through introducing mutant tyrosine hydroxylase enzymes, an optimized plant norcoclaurine synthase variant, and optimizing culture conditions. Finally, we incorporated five additional plant enzymes--three methyltransferases, a cytochrome P450, and its reductase partner--to achieve de novo production of the key branch point molecule reticuline with a titer of 19.2 µg/L. These strains and reconstructed pathways will serve as a platform for the biosynthesis of diverse natural and novel BIAs.


Asunto(s)
Bencilisoquinolinas/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA