Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 19(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699950

RESUMEN

Conservation researchers require low-cost access to acoustic monitoring technology. However, affordable tools are often constrained to short-term studies due to high energy consumption and limited storage. To enable long-term monitoring, energy and space efficiency must be improved on such tools. This paper describes the development and deployment of three acoustic detection algorithms that reduce the power and storage requirements of acoustic monitoring on affordable, open-source hardware. The algorithms aim to detect bat echolocation, to search for evidence of an endangered cicada species, and also to collect evidence of poaching in a protected nature reserve. The algorithms are designed to run on AudioMoth: a low-cost, open-source acoustic monitoring device, developed by the authors and widely adopted by the conservation community. Each algorithm addresses a detection task of increasing complexity, implementing extra analytical steps to account for environmental conditions such as wind, analysing samples multiple times to prevent missed events, and incorporating a hidden Markov model for sample classification in both the time and frequency domain. For each algorithm, we report on real-world deployments carried out with partner organisations and also benchmark the hidden Markov model against a convolutional neural network, a deep-learning technique commonly used for acoustics. The deployments demonstrate how acoustic detection algorithms extend the use of low-cost, open-source hardware and facilitate a new avenue for conservation researchers to perform large-scale monitoring.

2.
Agron Sustain Dev ; 37(4): 33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32010239

RESUMEN

Crop residue management is an important agricultural practice that has a high potential to improve soil health and optimize crop production. Compared to annual crops, relatively little is known about crop residue management effects on the yield and temporal stability of perennial crop production. This study focused on oil palm (Elaeis guineensis), an important tropical crop that had expanded rapidly over the past decades. We aimed to understand the effects of applying a major oil palm residue, the empty fruit bunch, on crop yield and temporal stability of production. We compared 15 years of crop yield performance from a field trial in Sumatra, Indonesia. The treatments included empty fruit bunch application of three application rates (30, 60, and 90 t ha-1 year-1), and a reference treatment of chemical fertilizers with no addition of empty fruit bunch. Compared to the reference treatment, the cumulative crop yield over 15 years under low, medium, and high application rates of empty fruit bunch increased by 2.4, 5.9, and 4.8%, respectively. The annual crop yield and temporal stability in production were not significantly different between treatments. Soil organic carbon was significantly higher under medium application rate of empty fruit bunch compared to that under the chemical fertilizer treatment. Soil organic carbon and relative humidity were positively associated with annual crop yield with a time lag of 2 years. This study is the first to show that both crop yield and temporal variability of oil palm production can be maintained under crop residue application, compared to chemical fertilizer treatment. Furthermore, climatic conditions had strong effects on the temporal variability of oil palm production. These findings will inform the design of optimal empty fruit bunch application schemes that enhance sustainable intensification of oil palm cultivation.

3.
Proc Biol Sci ; 283(1844)2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27928046

RESUMEN

One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.


Asunto(s)
Biodiversidad , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , Malasia , Plantones/crecimiento & desarrollo
5.
Biol Lett ; 8(3): 397-400, 2012 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-22188674

RESUMEN

The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.


Asunto(s)
Artrópodos/fisiología , Biodiversidad , Ecosistema , Marasmius/fisiología , Árboles , Animales , Malasia , Clima Tropical
6.
Ecol Evol ; 9(11): 6433-6443, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31236233

RESUMEN

Conversion of forest to oil palm plantations results in a significant loss of biodiversity. Despite this, first-cycle oil palm plantations can sustain relatively high biodiversity compared to other crops. However, the long-term effects of oil palm agriculture on flora and fauna are unknown. Oil palm has a 25-year commercial lifespan before it must be replanted, due to reduced productivity and difficulty of harvesting. Loss of the complex vegetation structure of oil palm plantations during the replanting process will likely have impacts on the ecosystem at a local and landscape scale. However, the effect of replanting on biodiversity is poorly understood.Here, we investigate the effects of replanting oil palm on soil macrofauna communities. We assessed ordinal richness, abundance, and community composition of soil macrofauna in first- (25- to 27-year-old) and second-cycle oil palm (freshly cleared, 1-year-old, 3-year-old, and 7-year-old mature).Macrofauna abundance and richness drastically declined immediately after replanting. Macrofauna richness showed some recovery 7 years after replanting, but was still 19% lower than first-cycle oil palm. Macrofauna abundance recovered to similar levels to that of first-cycle oil palm plantations, 1 year after replanting. This was mainly due to high ant abundance, possibly due to the increased understory vegetation as herbicides are not used at this age. However, there were subsequent declines in macrofauna abundance 3 and 7 years after replanting, resulting in a 59% drop in macrofauna abundance compared to first-cycle levels. Furthermore, soil macrofauna community composition in all ages of second-cycle oil palm was different to first-cycle plantations, with decomposers suffering particular declines.After considerable biodiversity loss due to forest conversion for oil palm, belowground invertebrate communities suffer a second wave of biodiversity loss due to replanting. This is likely to have serious implications for soil invertebrate diversity and agricultural sustainability in oil palm landscapes, due to the vital ecosystem functions that soil macrofauna provide.

7.
Ecol Evol ; 8(3): 1595-1603, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435235

RESUMEN

Expansion of oil palm agriculture is currently one of the main drivers of habitat modification in Southeast Asia. Habitat modification can have significant effects on biodiversity, ecosystem function, and interactions between species by altering species abundances or the available resources in an ecosystem. Increasing complexity within modified habitats has the potential to maintain biodiversity and preserve species interactions. We investigated trophic interactions between Argyrodes miniaceus, a cleptoparasitic spider, and its Nephila spp. spider hosts in mature oil palm plantations in Sumatra, Indonesia. A. miniaceus co-occupy the webs of Nephila spp. females and survive by stealing prey items caught in the web. We examined the effects of experimentally manipulated understory vegetation complexity on the density and abundance of A. miniaceus in Nephila spp. webs. Experimental understory treatments included enhanced complexity, standard complexity, and reduced complexity understory vegetation, which had been established as part of the ongoing Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 14.4 to 31.4 spiders per square meter of web, with significantly lower densities found in reduced vegetation complexity treatments compared with both enhanced and standard treatment plots. A. miniaceus abundance per plot was also significantly lower in reduced complexity than in standard and enhanced complexity plots. Synthesis and applications: Maintenance of understory vegetation complexity contributes to the preservation of spider host-cleptoparasite relationships in oil palm plantations. Understory structural complexity in these simplified agroecosystems therefore helps to support abundant spider populations, a functionally important taxon in agricultural landscapes. In addition, management for more structurally complex agricultural habitats can support more complex trophic interactions in tropical agroecosystems.

8.
PLoS One ; 12(12): e0189577, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29240835

RESUMEN

Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i) which animal taxa are being studied; ii) if any taxonomic biases are the same in temperate and tropical regions; iii) whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv) the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v) the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects) in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries with larger economies, and for a given level of species or threatened species, tropical countries were understudied relative to temperate countries. Finally, biodiversity research is disproportionately authored by researchers from wealthier countries, with studies less likely to be carried out by scientists in lower-GDP nations. Our results highlight the need for a more systematic and directed evaluation of biodiversity studies, perhaps informing more targeted research towards those areas and taxa most depauperate in research. Only by doing so can we ensure that biodiversity research yields results that are relevant and applicable to all regions and that the information necessary for the conservation of threatened species is available to conservation practitioners.


Asunto(s)
Biodiversidad , Clima , Vertebrados/clasificación , Animales , Conservación de los Recursos Naturales , Geografía
9.
Nat Commun ; 6: 6836, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25865801

RESUMEN

Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal/estadística & datos numéricos , Invertebrados/fisiología , Dispersión de las Plantas/fisiología , Bosque Lluvioso , Árboles/fisiología , Anfibios/fisiología , Animales , Biodiversidad , Aves/fisiología , Cadena Alimentaria , Humanos , Malasia , Mamíferos/fisiología , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical
10.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3292-302, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22006969

RESUMEN

Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Árboles/fisiología , Agricultura , Altitud , Arecaceae/fisiología , Borneo , Malasia , Clima Tropical
11.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3303-15, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22006970

RESUMEN

Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Árboles/fisiología , Biomasa , Carbono/química , Dipterocarpaceae/química , Dipterocarpaceae/fisiología , Agricultura Forestal , Malasia , Tallos de la Planta/fisiología , Proyectos de Investigación , Plantones/fisiología , Suelo/química , Factores de Tiempo , Árboles/química , Clima Tropical
12.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3277-91, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22006968

RESUMEN

The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.


Asunto(s)
Arecaceae/fisiología , Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura , Animales , Herbivoria/fisiología , Humanos , Insectos/fisiología , Malasia , Microclima , Polinización , Densidad de Población , Suelo/química , Árboles/fisiología , Clima Tropical
13.
PLoS One ; 3(7): e2579, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18596931

RESUMEN

Globally, natural ecosystems are being lost to agricultural land at an unprecedented rate. This land-use often results in significant reductions in abundance and diversity of the flora and fauna as well as alterations in their composition. Despite this, there is little public perception of which taxa are most important in terms of their total biomass, biodiversity or the ecosystem services they perform. Such awareness is important for conservation, as without appreciation of their value and conservation status, species are unlikely to receive adequate conservation protection. We investigated children's perceptions of rainforest biodiversity by asking primary-age children, visiting the University Museum of Zoology, Cambridge to draw their ideal rainforest. By recording the frequency at which children drew different climatic, structural, vegetative and faunal components of the rainforest, we were able to quantify children's understanding of a rainforest environment. We investigated children's perceptions of rainforest biodiversity by comparing the relative numbers of the taxa drawn with the actual contributions made by these taxa to total rainforest biomass and global biodiversity. We found that children have a sophisticated view of the rainforest, incorporating many habitat features and a diverse range of animals. However, some taxa were over-represented (particularly mammals, birds and reptiles) and others under-represented (particularly insects and annelids) relative to their contribution to total biomass and species richness. Scientists and naturalists must continue to emphasise the diversity and functional importance of lesser-known taxa through public communication and outdoor events to aid invertebrate conservation and to ensure that future generations are inspired to become naturalists themselves.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Clima Tropical , Animales , Concienciación , Niño , Preescolar , Femenino , Humanos , Masculino , Percepción , Árboles
14.
PLoS One ; 3(2): e1572, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18270566

RESUMEN

Oil palm cultivation is frequently cited as a major threat to tropical biodiversity as it is centered on some of the world's most biodiverse regions. In this report, Web of Science was used to find papers on oil palm published since 1970, which were assigned to different subject categories to visualize their research focus. Recent years have seen a broadening in the scope of research, with a slight growth in publications on the environment and a dramatic increase in those on biofuel. Despite this, less than 1% of publications are related to biodiversity and species conservation. In the context of global vegetable oil markets, palm oil and soyabean account for over 60% of production but are the subject of less than 10% of research. Much more work must be done to establish the impacts of habitat conversion to oil palm plantation on biodiversity. Results from such studies are crucial for informing conservation strategies and ensuring sustainable management of plantations.


Asunto(s)
Biodiversidad , Investigación Biomédica/estadística & datos numéricos , Aceites de Plantas , Conservación de los Recursos Naturales , Productos Agrícolas , Aceite de Palma , Publicaciones Periódicas como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA