Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 120-130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806533

RESUMEN

Microbiome science has been one of the most exciting and rapidly evolving research fields in the past two decades. Breakthroughs in technologies including DNA sequencing have meant that the trillions of microbes (particularly bacteria) inhabiting human biological niches (particularly the gut) can be profiled and analysed in exquisite detail. This microbiome profiling has profound impacts across many fields of research, especially biomedical science, with implications for how we understand and ultimately treat a wide range of human disorders. However, like many great scientific frontiers in human history, the pioneering nature of microbiome research comes with a multitude of challenges and potential pitfalls. These include the reproducibility and robustness of microbiome science, especially in its applications to human health outcomes. In this article, we address the enormous promise of microbiome science and its many challenges, proposing constructive solutions to enhance the reproducibility and robustness of research in this nascent field. The optimisation of microbiome science spans research design, implementation and analysis, and we discuss specific aspects such as the importance of ecological principals and functionality, challenges with microbiome-modulating therapies and the consideration of confounding, alternative options for microbiome sequencing, and the potential of machine learning and computational science to advance the field. The power of microbiome science promises to revolutionise our understanding of many diseases and provide new approaches to prevention, early diagnosis, and treatment.


Asunto(s)
Microbiota , Humanos , Reproducibilidad de los Resultados , Aprendizaje Automático
2.
Curr Hypertens Rep ; 26(9): 369-380, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38662328

RESUMEN

PURPOSE OF THE REVIEW: To review what intestinal permeability is and how it is measured, and to summarise the current evidence linking altered intestinal permeability with the development of hypertension. RECENT FINDINGS: Increased gastrointestinal permeability, directly measured in vivo, has been demonstrated in experimental and genetic animal models of hypertension. This is consistent with the passage of microbial substances to the systemic circulation and the activation of inflammatory pathways. Evidence for increased gut permeability in human hypertension has been reliant of a handful of blood biomarkers, with no studies directly measuring gut permeability in hypertensive cohorts. There is emerging literature that some of these putative biomarkers may not accurately reflect permeability of the gastrointestinal tract. Data from animal models of hypertension support they have increased gut permeability; however, there is a dearth of conclusive evidence in humans. Future studies are needed that directly measure intestinal permeability in people with hypertension.


Asunto(s)
Hipertensión , Mucosa Intestinal , Permeabilidad , Humanos , Hipertensión/fisiopatología , Mucosa Intestinal/fisiopatología , Mucosa Intestinal/metabolismo , Animales , Microbioma Gastrointestinal/fisiología , Biomarcadores/metabolismo , Tracto Gastrointestinal/fisiopatología
3.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732038

RESUMEN

The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.


Asunto(s)
Enfermedades Autoinmunes , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/inmunología , Enfermedades Autoinmunes/microbiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Animales , Ácidos Grasos Volátiles/metabolismo , Enfermedades Renales/microbiología , Enfermedades Renales/inmunología , Enfermedades Renales/terapia
4.
Am J Physiol Renal Physiol ; 325(3): F345-F362, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440367

RESUMEN

Gut microbiome research has increased dramatically in the last decade, including in renal health and disease. The field is moving from experiments showing mere association to causation using both forward and reverse microbiome approaches, leveraging tools such as germ-free animals, treatment with antibiotics, and fecal microbiota transplantations. However, we are still seeing a gap between discovery and translation that needs to be addressed, so that patients can benefit from microbiome-based therapies. In this guideline paper, we discuss the key considerations that affect the gut microbiome of animals and clinical studies assessing renal function, many of which are often overlooked, resulting in false-positive results. For animal studies, these include suppliers, acclimatization, baseline microbiota and its normalization, littermates and cohort/cage effects, diet, sex differences, age, circadian differences, antibiotics and sweeteners, and models used. Clinical studies have some unique considerations, which include sampling, gut transit time, dietary records, medication, and renal phenotypes. We provide best-practice guidance on sampling, storage, DNA extraction, and methods for microbial DNA sequencing (both 16S rRNA and shotgun metagenome). Finally, we discuss follow-up analyses, including tools available, metrics, and their interpretation, and the key challenges ahead in the microbiome field. By standardizing study designs, methods, and reporting, we will accelerate the findings from discovery to translation and result in new microbiome-based therapies that may improve renal health.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Masculino , Femenino , ARN Ribosómico 16S/genética , Trasplante de Microbiota Fecal , Antibacterianos
5.
Immunol Cell Biol ; 100(6): 390-393, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35599627

RESUMEN

A recently published study by Bell et al. shows altered immunotolerance in people with type 1 diabetes by dietary supplementation of modified resistant starch fibre.


Asunto(s)
Diabetes Mellitus , Almidón , Diabetes Mellitus/terapia , Fibras de la Dieta , Humanos
6.
J Ren Nutr ; 32(5): 542-551, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34776340

RESUMEN

OBJECTIVE: This study aims to explore the associations between diet quality, uraemic toxins, and gastrointestinal microbiota in the chronic kidney disease (CKD) population. METHODS: This is a baseline cross-sectional study of adults with CKD participating in a randomized controlled trial of prebiotic and probiotic supplementation. Dietary intake was measured using a seven-day diet history method, administered by a specialist dietitian. Diet quality was assessed using plant-based diet index (PDI) (overall PDI, healthy PDI, and unhealthy PDI), food group analysis, protein intake, fiber intake, and dietary protein-to-fiber ratio. Serum uraemic toxins (free and total; indoxyl sulfate and p-cresyl sulfate) were determined by ultraperformance liquid chromatography. Gastrointestinal microbiota richness, diversity, composition, and functional capacity were analyzed via metagenomic sequencing. RESULTS: Sixty-eight adults [median age: 70 (interquartile range: 58-75) years, 66% male] with an estimated glomerular filtration rate of 34 ± 11 mL/min/1.73 m2 were included, with 40 participants completing the optional fecal substudy. Dietary fiber intake was associated with lower levels of total indoxyl sulfate, whereas the healthy plant-based diet index was associated with lower levels of free p-cresyl sulfate. A higher protein-to-fiber ratio was associated with an increased relative abundance of unclassified members of order Oscillospirales. Intake of vegetables and whole grains was correlated with Subdoligranulum formicile, whereas an unclassified Prevotella species was correlated with potatoes and food items considered discretionary, including sweet drinks, sweet desserts, and animal fats. CONCLUSIONS: Diet quality may influence uraemic toxin generation and gut microbiota diversity, composition, and function in adults with CKD. Well-designed dietary intervention studies targeting the production of uraemic toxins and exploring the impact on gut microbiome are warranted in the CKD population.


Asunto(s)
Microbiota , Insuficiencia Renal Crónica , Animales , Cresoles , Estudios Transversales , Dieta , Fibras de la Dieta , Humanos , Indicán , Factores de Riesgo , Sulfatos , Tóxinas Urémicas
7.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163688

RESUMEN

There is increasing evidence for the role of intestinal permeability as a contributing factor in the pathogenesis of diabetes; however, the molecular mechanisms are poorly understood. Advanced glycation endproducts, of both exogenous and endogenous origin, have been shown to play a role in diabetes pathophysiology, in part by their ligation to the receptor for advanced glycation endproducts (RAGE), leading to a proinflammatory signalling cascade. RAGE signalling has been demonstrated to play a role in the development of intestinal inflammation and permeability in Crohn's disease and ulcerative colitis. In this review, we explore the role of AGE-RAGE signalling and intestinal permeability and explore whether activation of RAGE on the intestinal epithelium may be a downstream event contributing to the pathogenesis of diabetes complications.


Asunto(s)
Diabetes Mellitus/fisiopatología , Productos Finales de Glicación Avanzada/metabolismo , Intestinos/fisiopatología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Animales , Humanos , Permeabilidad
8.
Circulation ; 141(17): 1393-1403, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32093510

RESUMEN

BACKGROUND: High blood pressure (BP) continues to be a major, poorly controlled but modifiable risk factor for cardiovascular death. Among key Western lifestyle factors, a diet poor in fiber is associated with prevalence of high BP. The impact of lack of prebiotic fiber and the associated mechanisms that lead to higher BP are unknown. Here we show that lack of prebiotic dietary fiber leads to the development of a hypertensinogenic gut microbiota, hypertension and its complications, and demonstrate a role for G-protein coupled-receptors (GPCRs) that sense gut metabolites. METHODS: One hundred seventy-nine mice including C57BL/6J, gnotobiotic C57BL/6J, and knockout strains for GPR41, GPR43, GPR109A, and GPR43/109A were included. C57BL/6J mice were implanted with minipumps containing saline or a slow-pressor dose of angiotensin II (0.25 mg·kg-1·d-1). Mice were fed diets lacking prebiotic fiber with or without addition of gut metabolites called short-chain fatty acids ([SCFA)] produced during fermentation of prebiotic fiber in the large intestine), or high prebiotic fiber diets. Cardiac histology and function, BP, sodium and potassium excretion, gut microbiome, flow cytometry, catecholamines and methylation-wide changes were determined. RESULTS: Lack of prebiotic fiber predisposed mice to hypertension in the presence of a mild hypertensive stimulus, with resultant pathological cardiac remodeling. Transfer of a hypertensinogenic microbiota to gnotobiotic mice recapitulated the prebiotic-deprived hypertensive phenotype, including cardiac manifestations. Reintroduction of SCFAs to fiber-depleted mice had protective effects on the development of hypertension, cardiac hypertrophy, and fibrosis. The cardioprotective effect of SCFAs were mediated via the cognate SCFA receptors GPR43/GPR109A, and modulated L-3,4-dihydroxyphenylalanine levels and the abundance of T regulatory cells regulated by DNA methylation. CONCLUSIONS: The detrimental effects of low fiber Westernized diets may underlie hypertension, through deficient SCFA production and GPR43/109A signaling. Maintaining a healthy, SCFA-producing microbiota is important for cardiovascular health.


Asunto(s)
Fibras de la Dieta/deficiencia , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Hipertensión , Mucosa Intestinal , Prebióticos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/microbiología , Hipertensión/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética
9.
Nephrol Dial Transplant ; 36(6): 988-997, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33367789

RESUMEN

BACKGROUND: The nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (Nox4) mediates reactive oxygen species (ROS) production and renal fibrosis in diabetic kidney disease (DKD) at the level of the podocyte. However, the mitochondrial localization of Nox4 and its role as a mitochondrial bioenergetic sensor has recently been reported. Whether Nox4 drives pathology in DKD within the proximal tubular compartment, which is densely packed with mitochondria, is not yet known. METHODS: We generated a proximal tubular-specific Nox4 knockout mouse model by breeding Nox4flox/flox mice with mice expressing Cre recombinase under the control of the sodium-glucose cotransporter-2 promoter. Subsets of Nox4ptKO mice and their Nox4flox/flox littermates were injected with streptozotocin (STZ) to induce diabetes. Mice were followed for 20 weeks and renal injury was assessed. RESULTS: Genetic ablation of proximal tubular Nox4 (Nox4ptKO) resulted in no change in renal function and histology. Nox4ptKO mice and Nox4flox/flox littermates injected with STZ exhibited the hallmarks of DKD, including hyperfiltration, albuminuria, renal fibrosis and glomerulosclerosis. Surprisingly, diabetes-induced renal injury was not improved in Nox4ptKO STZ mice compared with Nox4flox/flox STZ mice. Although diabetes conferred ROS overproduction and increased the mitochondrial oxygen consumption rate, proximal tubular deletion of Nox4 did not normalize oxidative stress or mitochondrial bioenergetics. CONCLUSIONS: Taken together, these results demonstrate that genetic deletion of Nox4 from the proximal tubules does not influence DKD development, indicating that Nox4 localization within this highly energetic compartment is dispensable for chronic kidney disease pathogenesis in the setting of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/genética , Riñón , Túbulos Renales , Túbulos Renales Proximales , Ratones , NADP , NADPH Oxidasa 4/genética , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno
10.
Am J Physiol Renal Physiol ; 318(3): F835-F842, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068460

RESUMEN

Alterations in gut homeostasis may contribute to the progression of diabetic nephropathy. There has been recent attention on the renoprotective effects of metabolite-sensing receptors in chronic renal injury, including the G protein-coupled receptor (GPR)109a, which ligates the short-chain fatty acid butyrate. However, the role of GPR109a in the development of diabetic nephropathy, a milieu of diminished microbiome-derived metabolites, has not yet been determined. The present study aimed to assess the effects of insufficient GPR109a signaling, via genetic deletion of GPR109a, on the development of renal injury in diabetic nephropathy. Gpr109a-/- mice or their wild-type littermates (Gpr109a+/+) were rendered diabetic with streptozotocin. Mice received a control diet or an isocaloric high-fiber diet (12.5% resistant starch) for 24 wk, and gastrointestinal permeability and renal injury were determined. Diabetes was associated with increased albuminuria, glomerulosclerosis, and inflammation. In comparison, Gpr109a-/- mice with diabetes did not show an altered renal phenotype. Resistant starch supplementation did not afford protection from renal injury in diabetic nephropathy. While diabetes was associated with alterations in intestinal morphology, intestinal permeability assessed in vivo using the FITC-dextran test was unaltered. GPR109a deletion did not worsen gastrointestinal permeability. Furthermore, 12.5% resistant starch supplementation, at physiological concentrations, had no effect on intestinal permeability or morphology. The results of this study indicate that GPR109a does not play a critical role in intestinal homeostasis in a model of type 1 diabetes or in the development of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Peso Corporal , Diabetes Mellitus Experimental , Hemoglobina Glucada , Intestinos/anatomía & histología , Intestinos/fisiología , Masculino , Ratones , Ratones Noqueados , Permeabilidad , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA