Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microvasc Res ; 156: 104732, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39147360

RESUMEN

Fluorescence intravital microscopy captures large data sets of dynamic multicellular interactions within various organs such as the lungs, liver, and brain of living subjects. In medical imaging, edge detection is used to accurately identify and delineate important structures and boundaries inside the images. To improve edge sharpness, edge detection frequently requires the inclusion of low-level features. Herein, a machine learning approach is needed to automate the edge detection of multicellular aggregates of distinctly labeled blood cells within the microcirculation. In this work, the Structured Adaptive Boosting Trees algorithm (AdaBoost.S) is proposed as a contribution to overcome some of the edge detection challenges related to medical images. Algorithm design is based on the observation that edges over an image mask often exhibit special structures and are interdependent. Such structures can be predicted using the features extracted from a bigger image patch that covers the image edge mask. The proposed AdaBoost.S is applied to detect multicellular aggregates within blood vessels from the fluorescence lung intravital images of mice exposed to e-cigarette vapor. The predictive capabilities of this approach for detecting platelet-neutrophil aggregates within the lung blood vessels are evaluated against three conventional machine learning algorithms: Random Forest, XGBoost and Decision Tree. AdaBoost.S exhibits a mean recall, F-score, and precision of 0.81, 0.79, and 0.78, respectively. Compared to all three existing algorithms, AdaBoost.S has statistically better performance for recall and F-score. Although AdaBoost.S does not outperform Random Forest in precision, it remains superior to the XGBoost and Decision Tree algorithms. The proposed AdaBoost.S is widely applicable to analysis of other fluorescence intravital microscopy applications including cancer, infection, and cardiovascular disease.


Asunto(s)
Algoritmos , Plaquetas , Microscopía Intravital , Pulmón , Aprendizaje Automático , Microscopía Fluorescente , Neutrófilos , Animales , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Plaquetas/metabolismo , Interpretación de Imagen Asistida por Computador , Agregación Celular , Ratones , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas , Ratones Endogámicos C57BL
2.
J Toxicol Environ Health A ; 86(8): 246-262, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36859793

RESUMEN

Despite the perception that e-cigarettes are safer than conventional cigarettes, numerous findings demonstrated that e-cigarette aerosol (EC) exposure induced compromised immune functionality, vascular changes even after acute exposure, and lung injury. Notably, altered neutrophil functionality and platelet hemodynamics have been observed post-EC exposure. It was hypothesized that EC exposure initiates an inflammatory response resulting in altered neutrophil behavior and increased neutrophil-platelet interaction in the pulmonary microvasculature. Neutrophil and platelet responses were examined up to 48 hrs following whole-body, short-term EC exposure without flavorants or nicotine in a murine model, which most closely modeled secondhand exposure. This study is the first to investigate the impact of EC exposure through lung intravital imaging. Compared to room air-exposed mice, EC-exposed mice displayed significantly increased 1.7‒1.9-fold number of neutrophils in the pulmonary microvasculature associated with no marked change in neutrophils within whole blood or bronchoalveolar lavage fluid (BALF). Neutrophil-platelet interactions were also significantly elevated 1.9‒2.5-fold in exposed mice. Plasma concentration of myeloperoxidase was markedly reduced 1.5-fold 48 hr following exposure cessation, suggesting suppressed neutrophil antimicrobial activity. Cytokine expression exhibited changes indicating vascular damage. Effects persisted for 48 hr post-EC exposure. Data demonstrated that EC exposure repeated for 3 consecutive days in 2.5 hr intervals in the absence of flavorants or nicotine resulted in modified pulmonary vasculature hemodynamics, altered immune functionality, and a pro-inflammatory state in female BALB/cJ mice.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Neutrófilos , Femenino , Ratones , Animales , Neutrófilos/metabolismo , Agregación Plaquetaria , Nicotina/metabolismo , Infiltración Neutrófila , Aerosoles y Gotitas Respiratorias , Pulmón/metabolismo , Microvasos
3.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830344

RESUMEN

Electronic cigarettes are frequently viewed as a safer alternative to conventional cigarettes; however, evidence to support this perspective has not materialized. Indeed, the current literature reports that electronic cigarette use is associated with both acute lung injury and subclinical dysfunction to the lung and vasculature that may result in pathology following chronic use. E-cigarettes can alter vascular dynamics, polarize innate immune populations towards a proinflammatory state, compromise barrier function in the pulmonary endothelium and epithelium, and promote pre-oncogenic phenomena. This review will summarize the variety of e-cigarette products available to users, discuss current challenges in e-cigarette study design, outline the range of pathologies occurring in cases of e-cigarette associated acute lung injury, highlight disease supporting tissue- and cellular-level changes resulting from e-cigarette exposure, and briefly examine how these changes may promote tumorigenesis. Continued research of the mechanisms by which e-cigarettes induce pathology benefit users and clinicians by resulting in increased regulation of vaping devices, informing treatments for emerging diseases e-cigarettes produce, and increasing public awareness to reduce e-cigarette use and the onset of preventable disease.


Asunto(s)
Lesión Pulmonar Aguda/patología , Enfermedades Cardiovasculares/patología , Sistemas Electrónicos de Liberación de Nicotina , Neoplasias Pulmonares/patología , Vapeo/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Animales , Plaquetas/efectos de los fármacos , Plaquetas/inmunología , Plaquetas/patología , Carcinogénesis/inmunología , Carcinogénesis/patología , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Neovascularización Patológica/inducido químicamente , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/patología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Roedores , Vapeo/inmunología
4.
Breast Cancer Res ; 21(1): 145, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852512

RESUMEN

The formation of neutrophil extracellular traps (NETs), known as NETosis, was first observed as a novel immune response to bacterial infection, but has since been found to occur abnormally in a variety of other inflammatory disease states including cancer. Breast cancer is the most commonly diagnosed malignancy in women. In breast cancer, NETosis has been linked to increased disease progression, metastasis, and complications such as venous thromboembolism. NET-targeted therapies have shown success in preclinical cancer models and may prove valuable clinical targets in slowing or halting tumor progression in breast cancer patients. We will briefly outline the mechanisms by which NETs may form in the tumor microenvironment and circulation, including the crosstalk between neutrophils, tumor cells, endothelial cells, and platelets as well as the role of cancer-associated extracellular vesicles in modulating neutrophil behavior and NET extrusion. The prognostic implications of cancer-associated NETosis will be explored in addition to development of novel therapeutics aimed at targeting NET interactions to improve outcomes in patients with breast cancer.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Microambiente Tumoral , Biomarcadores , Neoplasias de la Mama/etiología , Neoplasias de la Mama/terapia , Manejo de la Enfermedad , Trampas Extracelulares/inmunología , Femenino , Humanos , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neutrófilos/inmunología , Neutrófilos/patología , Trombosis
6.
Biosensors (Basel) ; 12(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35200382

RESUMEN

Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body's first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation.


Asunto(s)
Trampas Extracelulares , Nanopartículas del Metal , Nanopartículas , Animales , Medios de Contraste , Humanos , Ratones , Neutrófilos/metabolismo , Óxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA