Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918247

RESUMEN

The mitigation of autogenous shrinkage in cementitious materials by internal curing has been widely studied. By the inclusion of water reservoirs, in form of saturated lightweight aggregates or superabsorbent polymers, additional water is provided to the hydrating matrix. The onset of water release is of high importance and determines the efficiency of the internal curing mechanism. However, the monitoring of it poses problems as it is a process that takes place in the microstructure. Using acoustic emission (AE) sensors, the internal curing process is monitored, revealing its initiation and intensity, as well as the duration. In addition, AE is able to capture the water evaporation from saturated specimens. By ultrasonic testing, differences in the hydration kinetics are observed imposed by the different methods of internal curing. The results presented in this paper show the sensitivity of combined AE and ultrasound experiments to various fundamental mechanisms taking place inside cementitious materials and demonstrate the ability of acoustic emission to evaluate internal curing in a non-destructive and easily implementable way.

2.
Sensors (Basel) ; 20(10)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456153

RESUMEN

To mitigate autogenous shrinkage in cementitious materials and simultaneously preserve the material's mechanical performance, superabsorbent polymers and nanosilica are included in the mixture design. The use of the specific additives influences both the hydration process and the hardened microstructure, while autogenous healing of cracks can be stimulated. These three stages are monitored by means of non-destructive testing, showing the sensitivity of elastic waves to the occurring phenomena. Whereas the action of the superabsorbent polymers was evidenced by acoustic emission, the use of ultrasound revealed the differences in the developed microstructure and the self-healing of cracks by a comparison with more commonly performed mechanical tests. The ability of NDT to determine these various features renders it a promising measuring method for future characterization of innovative cementitious materials.

3.
SN Compr Clin Med ; 3(8): 1699-1703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33997623

RESUMEN

Scientific collaboration has been a critical aspect of the development of all fields of science, particularly clinical medicine. It is well understood that myriads of benefits can be yielded by interdisciplinary and international collaboration. For instance, our rapidly growing knowledge on COVID-19 and vaccine development could not be attained without expanded collaborative activities. However, achieving fruitful results requires mastering specific tactics in collaborative efforts. These activities can enhance our knowledge, which ultimately benefits society. In addition to tackling the issue of the invisible border between different countries, institutes, and disciplines, the border between the scientific community and society needs to be addressed as well. International and transdisciplinary approaches can potentially be the best solution for bridging science and society. The Universal Scientific Education and Research Network (USERN) is a non-governmental, non-profit organization and network to promote professional, scientific research and education worldwide. The fifth annual congress of USERN was held in Tehran, Iran, in a hybrid manner on November 7-10, 2020, with key aims of bridging science to society and facilitating borderless science. Among speakers of the congress, a group of top scientists unanimously agreed on The USERN 2020 consensus, which is drafted with the goal of connecting society with scientific scholars and facilitating international and interdisciplinary scientific activities in all fields, including clinical medicine.

4.
Materials (Basel) ; 13(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213026

RESUMEN

Superabsorbent polymers (SAPs) are known to mitigate the development of autogenous shrinkage in cementitious mixtures with a low water-to-cement ratio. Moreover, the addition of SAPs promotes the self-healing ability of cracks. A drawback of using SAPs lies in the formation of macropores when the polymers release their absorbed water, leading to a reduction of the mechanical properties. Therefore, a supplementary material was introduced together with SAPs, being nanosilica, in order to obtain an identical compressive strength with respect to the reference material without additives. The exact cause of the similar compressive behaviour lies in the modification of the hydration process and subsequent microstructural development by both SAPs and nanosilica. Within the present study, the effect of SAPs and nanosilica on the hydration progress and the hardened properties is assessed. By means of isothermal calorimetry, the hydration kinetics were monitored. Subsequently, the quantity of hydration products formed was determined by thermogravimetric analysis and scanning electron microscopy, revealing an increased amount of hydrates for both SAP and nanosilica blends. An assessment of the pore size distribution was made using mercury intrusion porosimetry and demonstrated the increased porosity for SAP mixtures. A correlation between microstructure and the compressive strength displayed its influence on the mechanical behaviour.

5.
Materials (Basel) ; 13(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947606

RESUMEN

Addition of superabsorbent polymers (SAPs) to cementitious mixtures promotes the self-healing ability of the material. When cracking occurs; SAPs present inside the crack will swell upon contact with water and subsequently release this water to stimulate the further hydration of unhydrated cement particles and the calcium carbonate crystallization. However; the inclusion of SAPs affects the mechanical performance of the cementitious material by the creation of macro-pores as water is retracted from the swollen SAP. To counteract the reduction in strength, part of the cement is replaced by nanosilica. In this research, different mixtures containing either SAPs or nanosilica and a combination of both were made. The samples were subjected to wet-dry cycles simulating external conditions, and the self-healing efficiency was evaluated by means of the evolution in crack width, by optical measurements, and a water permeability test. In samples containing SAPs, an immediate sealing effect was observed and visual crack closure was noticed. The smaller influence on the mechanical properties and the good healing characteristics in mixtures containing both nanosilica and SAPs are promising as a future material for use in building applications.

6.
Materials (Basel) ; 12(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547313

RESUMEN

Many studies have already been published concerning autogenous shrinkage in cementitious materials. Still, no consensus can be found in the literature regarding the determination of the time-zero to initiate the recording of autogenous shrinkage. With internal curing agents, a correct evaluation of their efficiency depends on an appropriate choice of the time-zero. This study investigates different approaches to estimate the time-zero for cement paste mixtures with and without superabsorbent polymers as internal curing agents. The initial and final setting times were determined by an electronic Vicat and ultrasonic pulse velocity measurements (UPV); the transition point between the fluid and solid state was determined from the autogenous strain curve; the development of the capillary pressure was also studied. The choice of time-zero before the transition point led to higher values of shrinkage strain that should not be taken into account for autogenous shrinkage. A negligible difference was found between the strains when the final setting time and the transition point were taken as time-zero. Considering the artefacts and practical issues involving the different methods, the use of the transition point from the autogenous strain curve is the most suitable technique for determining the time-zero.

7.
Materials (Basel) ; 12(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083408

RESUMEN

Superabsorbent polymers (SAPs) can be added to a concrete mixture to provide internal curing and reduce the risk for early-age shrinkage cracking. Hence, they can help to increase the overall durability of concrete structures. The type, swelling characteristics, kinetics of water release, amount and particle size of the SAPs will dictate their effectiveness for this purpose. In this paper, SAPs with different cross-linking degrees, particle sizes and amount of solubles are investigated. By varying these parameters, insight can be gained on the influence of each of these parameters on SAP properties such as the swelling capacity. In a next step, the SAPs can be implemented in mortar to assess their influence on mortar properties like workability, compressive strength or hydration kinetics. Based on these results, the 'ideal' SAP with tunable properties for a specific concrete application can be selected. For this purpose, an anionic SAP was synthesized with varying amounts of cross-linker and ground to particle sizes with d50 varying between 10 and 100 µm. The swelling capacity in demineralised water of 40 µm SAP particles increased with a decreasing degree of cross-linker from 66 g/g SAP with 1 mol% cross-linker to 270 g/g SAP in case of 0.15 mol% cross-linker, and was about three to four times larger than the swelling capacity in the prepared cement filtrate. The SAPs were tested for their effect on mortar workability, cement hydration kinetics and mechanical properties of the hardened mortar. With proper compensation for the absorbed water by the SAPs, the mortar workability was not negatively affected and the reduction in flow over the first two hours remained limited. The SAPs with the lowest swelling capacity, resulting in the smallest total amount of macro pores formed, showed the smallest negative effect on mortar compressive strength (a reduction of 23% compared to the reference after 28 days for an addition of 0.5 m% SAP) and a negligible effect on cement hydration. The difference in strength with the reference decreased as a function of mortar age. When using SAPs with particle sizes in the range of 10-100 µm, no significant differences between the studied particle sizes were found concerning the mortar properties. With the ease of upscaling in mind, the need to purify the SAPs and to remove the non-cross-linked soluble fraction was further investigated. It was shown that the solubles had no effect on the mortar properties, except for increasing the setting time with almost 100%.

8.
Materials (Basel) ; 10(3)2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28772599

RESUMEN

Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials.

9.
Front Microbiol ; 6: 1088, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528254

RESUMEN

Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA