Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 9(10): e1003671, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204256

RESUMEN

Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca⁺⁺ efflux from the lumen between inner and outer nuclear membrane we found that Ca⁺⁺ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis.


Asunto(s)
Señalización del Calcio , Caspasa 3/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Parvovirus H-1/metabolismo , Mitosis , Membrana Nuclear/enzimología , Infecciones por Parvoviridae/enzimología , Proteína Quinasa C/metabolismo , Animales , Calcio/metabolismo , Caspasa 3/genética , Quinasa 2 Dependiente de la Ciclina/genética , Parvovirus H-1/genética , Células HeLa , Humanos , Membrana Nuclear/genética , Membrana Nuclear/patología , Membrana Nuclear/virología , Infecciones por Parvoviridae/genética , Infecciones por Parvoviridae/patología , Proteína Quinasa C/genética , Xenopus laevis
2.
Adv Biol Regul ; 54: 39-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24157125

RESUMEN

Parvoviruses are serious pathogens but also serve as platforms for gene therapy or for using their lytic activity in experimental cancer treatment. Despite of their growing importance during the last decade little is known on how the viral genome is transported into the nucleus of the infected cell, which is crucial for replication. As nucleic acids are not karyophilic per se nuclear import must be driven by proteins attached to the viral genome. In turn, presence and conformation of these proteins depend upon the entry pathway of the virus into the cell. This review focuses on the trafficking of the parvoviral genome from the cellular periphery to nucleus. Despite of the uncertainties in knowledge about the entry pathway we show that parvoviruses developed a unique strategy to pass the nuclear envelope by hijacking enzymes involved in mitosis.


Asunto(s)
Membrana Nuclear/virología , Infecciones por Parvoviridae/virología , Parvovirus/metabolismo , Animales , Interacciones Huésped-Patógeno , Humanos , Membrana Nuclear/enzimología , Infecciones por Parvoviridae/enzimología , Parvovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA