Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Struct Biol ; 187(1): 1-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24780590

RESUMEN

Single particle cryo-electron microscopy (cryo-EM) is an emerging powerful tool for structural studies of macromolecular assemblies (i.e., protein complexes and viruses). Although single particle cryo-EM requires less concentrated and smaller amounts of samples than X-ray crystallography, it remains challenging to study specimens that are low-abundance, low-yield, or short-lived. The recent development of affinity grid techniques can potentially further extend single particle cryo-EM to these challenging samples by combining sample purification and cryo-EM grid preparation into a single step. Here we report a new design of affinity cryo-EM approach, cryo-SPIEM, that applies a traditional pathogen diagnosis tool Solid Phase Immune Electron Microscopy (SPIEM) to the single particle cryo-EM method. This approach provides an alternative, largely simplified and easier to use affinity grid that directly works with most native macromolecular complexes with established antibodies, and enables cryo-EM studies of native samples directly from cell cultures. In the present work, we extensively tested the feasibility of cryo-SPIEM with multiple samples including those of high or low molecular weight, macromolecules with low or high symmetry, His-tagged or native particles, and high- or low-yield macromolecules. Results for all these samples (non-purified His-tagged bacteriophage T7, His-tagged Escherichiacoli ribosomes, native Sindbis virus, and purified but low-concentration native Tulane virus) demonstrated the capability of cryo-SPIEM approach in specifically trapping and concentrating target particles on TEM grids with minimal view constraints for cryo-EM imaging and determination of 3D structures.


Asunto(s)
Bacteriófago T7/ultraestructura , Caliciviridae/ultraestructura , Microscopía por Crioelectrón/métodos , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Virus Sindbis/ultraestructura , Anticuerpos/química , Afinidad de Anticuerpos , Microscopía por Crioelectrón/instrumentación , Escherichia coli/química , Proteína Estafilocócica A/química
2.
J Virol ; 87(15): 8511-23, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23720714

RESUMEN

Alphavirus dogma has long dictated the production of a discrete set of structural proteins during infection of a cell: capsid, pE2, 6K, and E1. However, bioinformatic analyses of alphavirus genomes (A. E. Firth, B. Y. Chung, M. N. Fleeton, and J. F. Atkins, Virol. J. 5:108, 2008) suggested that a ribosomal frameshifting event occurs during translation of the alphavirus structural polyprotein. Specifically, a frameshift event is suggested to occur during translation of the 6K gene, yielding production of a novel protein, termed transframe (TF), comprised of a C-terminal extension of the 6K protein in the -1 open reading frame (ORF). Here, we validate the findings of Firth and colleagues with respect to the production of the TF protein and begin to characterize the function of TF. Using a mass spectrometry-based approach, we identified TF in purified preparations of both Sindbis and Chikungunya virus particles. We next constructed a panel of Sindbis virus mutants with mutations which alter the production, size, or sequence of TF. We demonstrate that TF is not absolutely required in culture, although disrupting TF production leads to a decrease in virus particle release in both mammalian and insect cells. In a mouse neuropathogenesis model, mortality was <15% in animals infected with the TF mutants, whereas mortality was 95% in animals infected with the wild-type virus. Using a variety of additional assays, we demonstrate that TF retains ion-channel activity analogous to that of 6K and that lack of production of TF does not affect genome replication, particle infectivity, or envelope protein transit to the cell surface. The TF protein therefore represents a previously uncharacterized factor important for alphavirus assembly.


Asunto(s)
Virus Chikungunya/fisiología , Regulación Viral de la Expresión Génica , Virus Sindbis/fisiología , Proteínas Virales/biosíntesis , Ensamble de Virus , Infecciones por Alphavirus/mortalidad , Infecciones por Alphavirus/patología , Infecciones por Alphavirus/virología , Animales , Línea Celular , Virus Chikungunya/genética , Virus Chikungunya/patogenicidad , Modelos Animales de Enfermedad , Insectos , Ratones , Virus Sindbis/genética , Análisis de Supervivencia , Replicación Viral
3.
J Virol ; 86(22): 12372-83, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22951842

RESUMEN

A 7-Å cryoelectron microscopy-based reconstruction of Sindbis virus (SINV) was recently generated. Fitting the crystal structure of the SINV capsid protein (Cp) into the density map revealed that the F2-G2 loop of the Cp was shifted away from cytoplasmic domain of E2 (cdE2) in the 7-Å reconstruction relative to its position in the Cp crystal structure. Furthermore, the reconstruction demonstrated that residue E395 in region I of the cytoplasmic domain of the E2 envelope protein (cdE2-RI) and K252 of Cp, part of the Cp F2-G2 loop, formed a putative salt bridge in the virion. We generated amino acid substitutions at residues K250 and K252 of the SINV Cp and explored the resulting phenotypes. In the context of cells infected with wild-type or mutant virus, reversing the charge of these two residues resulted in the appearance of Cp aggregates around cytopathic vacuole type I (CPV-I) structures, the absence of nucleocapsid (NC) formation, and a lack of virus particle release in the infected mammalian cell. However, expressing the same Cp mutants in the cell without the envelope proteins or expressing and purifying the mutants from an Escherichia coli expression system and assembling in vitro yielded NC assembly in all cases. In addition, second-site mutations within cdE2 restored NC assembly but not release of infectious particles. Our data suggest an early temporal and spatial interaction between cdE2-RI and the Cp F2-G2 loop that, when ablated, leads to the absence of NC assembly. This interaction also appears to be important for budding of virus particles.


Asunto(s)
Cápside/química , Virus Sindbis/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Animales , Cápside/metabolismo , Línea Celular , Cricetinae , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Dimerización , Ensayo de Inmunoadsorción Enzimática/métodos , Microscopía Electrónica/métodos , Mutación , Fenotipo , Estructura Terciaria de Proteína
4.
J Virol ; 85(12): 5773-81, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21471237

RESUMEN

Alphaviruses are small, spherical, enveloped, positive-sense, single-stranded, RNA viruses responsible for considerable human and animal disease. Using microinjection of preassembled cores as a tool, a system has been established to study the assembly and budding process of Sindbis virus, the type member of the alphaviruses. We demonstrate the release of infectious virus-like particles from cells expressing Sindbis virus envelope glycoproteins following microinjection of Sindbis virus nucleocapsids purified from the cytoplasm of infected cells. Furthermore, it is shown that nucleocapsids assembled in vitro mimic those isolated in the cytoplasm of infected cells with respect to their ability to be incorporated into enveloped virions following microinjection. This system allows for the study of the alphavirus budding process independent of an authentic infection and provides a platform to study viral and host requirements for budding.


Asunto(s)
Riñón/virología , Nucleocápside/administración & dosificación , Virión/fisiología , Ensamble de Virus/fisiología , Liberación del Virus/fisiología , Alphavirus/genética , Alphavirus/metabolismo , Alphavirus/fisiología , Animales , Línea Celular , Cricetinae , Humanos , Riñón/citología , Microinyecciones , Nucleocápside/genética , Nucleocápside/aislamiento & purificación , Nucleocápside/metabolismo , Virus Sindbis/metabolismo , Virus Sindbis/fisiología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Virión/patogenicidad , Virología/métodos
5.
Future Microbiol ; 4(7): 837-56, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19722838

RESUMEN

Alphaviruses are small, spherical, enveloped, positive-sense ssRNA viruses responsible for a considerable number of human and animal diseases. Alphavirus members include Chikungunya virus, Sindbis virus, Semliki Forest virus, the western, eastern and Venezuelan equine encephalitis viruses, and the Ross River virus. Alphaviruses can cause arthritic diseases and encephalitis in humans and animals and continue to be a worldwide threat. The viruses are transmitted by blood-sucking arthropods, and replicate in both arthropod and vertebrate hosts. Alphaviruses form spherical particles (65-70 nm in diameter) with icosahedral symmetry and a triangulation number of four. The icosahedral structures of alphaviruses have been defined to very high resolutions by cryo-electron microscopy and crystallographic studies. In this review, we summarize the major events in alphavirus infection: entry, replication, assembly and budding. We focus on data acquired from structural and functional studies of the alphaviruses. These structural and functional data provide a broader perspective of the virus lifecycle and structure, and allow additional insight into these important viruses.


Asunto(s)
Alphavirus/fisiología , Ensamble de Virus , Internalización del Virus , Replicación Viral , Alphavirus/ultraestructura , Modelos Biológicos , Modelos Moleculares , Proteínas Virales/química , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA