Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(4): 2027-2037, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235672

RESUMEN

The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Perfilación de la Expresión Génica , Bioensayo
2.
J Allergy Clin Immunol ; 152(3): 610-621, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271318

RESUMEN

BACKGROUND: Growing up on traditional European or US Amish dairy farms in close contact with cows and hay protects children against asthma, and airway administration of extracts from dust collected from cowsheds of those farms prevents allergic asthma in mice. OBJECTIVES: This study sought to begin identifying farm-derived asthma-protective agents. METHODS: Our work unfolded along 2 unbiased and independent but complementary discovery paths. Dust extracts (DEs) from protective and nonprotective farms (European and Amish cowsheds vs European sheep sheds) were analyzed by comparative nuclear magnetic resonance profiling and differential proteomics. Bioactivity-guided size fractionation focused on protective Amish cowshed DEs. Multiple in vitro and in vivo functional assays were used in both paths. Some of the proteins thus identified were characterized by in-solution and in-gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzymatic digestion/peptide mapping followed by liquid chromatography/mass spectrometry. The cargo carried by these proteins was analyzed by untargeted liquid chromatography-high-resolution mass spectrometry. RESULTS: Twelve carrier proteins of animal and plant origin, including the bovine lipocalins Bos d 2 and odorant binding protein, were enriched in DEs from protective European cowsheds. A potent asthma-protective fraction of Amish cowshed DEs (≈0.5% of the total carbon content of unfractionated extracts) contained 7 animal and plant proteins, including Bos d 2 and odorant binding protein loaded with fatty acid metabolites from plants, bacteria, and fungi. CONCLUSIONS: Animals and plants from traditional farms produce proteins that transport hydrophobic microbial and plant metabolites. When delivered to mucosal surfaces, these agents might regulate airway responses.


Asunto(s)
Asma , Polvo , Femenino , Animales , Bovinos , Ratones , Ovinos , Granjas , Polvo/análisis , Asma/prevención & control , Alérgenos , Sistema Respiratorio
3.
Environ Sci Technol ; 56(1): 13-29, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932308

RESUMEN

Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Plaguicidas/análisis , Preparaciones Farmacéuticas , Plásticos , Agua , Contaminantes Químicos del Agua/toxicidad
4.
Anal Bioanal Chem ; 414(9): 2795-2807, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35132477

RESUMEN

The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in various environments has led to increasing concern, and these chemicals have been confirmed as global contaminants. Following the chemical regulatory restrictions imposed, PFAS alternatives that are presumed to be less toxic have been manufactured to replace the traditional ones in the market. However, owing to the original release and alternative usage, continuous accumulation of PFAS has been reported in environmental and human samples, with uncertain consequences for ecosystem and human health. It is crucial to promote and improve existing analytical techniques to facilitate the detection of trace amounts of PFAS in diverse environmental matrices. This review summarizes analytical methods that have been applied to and advanced for targeted detection and suspect screening of PFAS, which mainly include (i) sampling and sample preparation methods for various environment matrices and organisms, and quality assurance/quality control during the analysis process, and (ii) quantitative methods for targeted analysis and automated suspect screening strategies for non-targeted PFAS analysis, together with their applications, advantages, shortcomings, and need for new method development.


Asunto(s)
Fluorocarburos , Ecosistema , Fluorocarburos/análisis , Humanos , Espectrometría de Masas , Manejo de Especímenes
5.
Environ Res ; 212(Pt D): 113531, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35613632

RESUMEN

Water polluted by pharmaceutically active compounds (PhACs) and water-borne pathogens urgently need to develop eco-friendly and advanced water treatment techniques. This paper evaluates the potential of using calcium peroxide (CaO2), a safe and biocompatible oxidant both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. This paper evaluates the potential of using calcium peroxide (CaO2) as a safe and biocompatible oxidant to remove both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. The increased CaO2 dosage increased efficiencies of PhACs attenuation and pathogens inactivation, and both exhibited pseudo-first-order degradation kinetics (R2 > 0.90). PhACs attenuation were mainly via oxidization (H2O2, •OH/O•-, and O2•-) and alkaline hydrolysis (OH-) from CaO2. Moreover, concentrations of these reactive species and their contributions to PhACs attenuation were quantified, and mechanistic model was established and validated. Besides, possible transformation pathways of target PhACs except primidone were proposed. As for pathogen indicators, the suitable inactivation dosage of CaO2 was 0.1 g L-1. The oxidability (18-64%) and alkalinity (82-36%) generated from CaO2 played vital roles in pathogen inactivation. In addition, CaO2 at 0.01-0.1 g L-1 can be applied in remediation of SW contaminated by PhACs and pathogenic bacteria, which can degrade target PhACs with efficiencies of 21-100% under 0.01 g L-1 CaO2, and inactivate 100% of test bacteria under 0.1 g L-1 CaO2. In short, capability of CaO2 to remove target PhACs and microbial pathogens reveals its potential to be used as a representative technology for the advanced treatment of waters contaminated by organic compounds and microbial pathogens.


Asunto(s)
Tianfenicol , Contaminantes Químicos del Agua , Carbamazepina/análisis , Escherichia coli , Peróxido de Hidrógeno , Oxidantes , Preparaciones Farmacéuticas , Primidona , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 52(15): 8588-8595, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29916696

RESUMEN

Reverse osmosis (RO)-based desalination and advanced water purification facilities have inherent challenges associated with concentrate management and disposal. Although enhanced permeate recovery and concentrate minimization are desired, membrane scaling due to inorganic constituents, such as silica, calcium, phosphate, and iron, hinders the process. To solve this problem, a new diatom-based photobiological process has been developed to remove these scaling constituents by biological uptake and precipitation. In this study, RO concentrate samples were collected from a full-scale advanced water reclamation facility in California and were treated in 3.8 and 57 L photobioreactors inoculated with a brackish water diatom  Pseudostaurosira trainorii PEWL001 using light-emitting diode bulbs or natural sunlight as a light source. The photobiological treatment removed 95% of reactive silica and 64% of calcium and enabled additional water recovery using a secondary RO at a recovery rate up to 66%. This represents 95% overall recovery, including 85% recovery in the primary RO unit. In addition to the scaling constituents, the photobiological treatment removed 12 pharmaceuticals and personal care products, as well as N-nitrosodimethylamine, from RO concentrate samples primarily via photolysis. This novel approach has a strong potential for application to brackish water desalination and advanced water purification in arid and semiarid areas.


Asunto(s)
Purificación del Agua , California , Membranas Artificiales , Ósmosis , Eliminación de Residuos Líquidos , Agua
7.
Ecotoxicol Environ Saf ; 161: 190-197, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29885614

RESUMEN

Selecting an appropriate crisis management plans during uncontrollable loading of pollution to water systems is crucial. In this research the quality of water resources against uncontrollable pollution is protected by use of suitable tools. Case study which was chosen in this investigation was a river-reservoir system. Analytical and numerical solutions of pollutant transport equation were considered as the simulation strategy to calculate the efficient tools to protect water quality. These practical instruments are dilution flow and a new tool called detention time which is proposed and simulated for the first time in this study. For uncontrollable pollution discharge which was approximately 130% of the river's assimilation capacity, as long as the duration of contact (Tc) was considered as a constraint, by releasing 30% of the base flow of the river from the upstream dilution reservoir, the unallowable pollution could be treated. Moreover, when the affected distance (Xc) was selected as a constraint, the required detention time that the rubber dam should detained the water to be treated was equal to 187% of the initial duration of contact.


Asunto(s)
Contaminantes del Agua , Calidad del Agua , Monitoreo del Ambiente , Ríos , Movimientos del Agua , Contaminación del Agua
8.
Sensors (Basel) ; 18(7)2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012989

RESUMEN

Advanced treatment of reclaimed water prior to potable reuse normally results in the inactivation of bacterial populations, however, incremental treatment failure can result in bacteria, including pathogens, remaining viable. Therefore, potential microorganisms need to be detected in real-time to preclude potential adverse human health effects. Real-time detection of microbes presents unique problems which are dependent on the water quality of the test water, including parameters such as particulate content and turbidity, and natural organic matter content. In addition, microbes are unusual in that: (i) viability and culturability are not always synonymous; (ii) viability in water can be reduced by osmotic stress; and (iii) bacteria can invoke repair mechanisms in response to UV disinfection resulting in regrowth of bacterial populations. All these issues related to bacteria affect the efficacy of real-time detection for bacteria. Here we evaluate three different sensors suitable for specific water qualities. The sensor A is an on-line, real-time sensor that allows for the continuous monitoring of particulates (including microbial contaminants) using multi-angle-light scattering (MALS) technology. The sensor B is a microbial detection system that uses optical technique, Mie light scattering, for particle sizing and fluorescence emission for viable bacteria detection. The last sensor C was based on adenosine triphosphate (ATP) production. E. coli was used a model organism and out of all tested sensors, we found the sensor C to be the most accurate. It has a great potential as a surrogate parameter for microbial loads in test waters and be useful for process control in treatment trains.


Asunto(s)
Desinfección/normas , Escherichia coli/aislamiento & purificación , Microbiología del Agua , Calidad del Agua , Adenosina Trifosfato/biosíntesis , Desinfección/métodos , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Humanos , Presión Osmótica , Factores de Tiempo
9.
Environ Sci Technol ; 51(5): 2738-2747, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28199788

RESUMEN

The photochemical transformation of pharmaceutical and personal care products (PPCPs) in wastewater effluents is an emerging concern for environmental scientists. In the current study, the photodegradation of 29 PPCPs was examined in effluents under simulated solar irradiation. Direct photodegradation, triplet state effluent organic matter (3EfOM*)-mediated and hydroxyl radical (HO•)-mediated degradation are three major pathways in the removal process. With the photodegradation of trace levels of PPCPs, the excitation-emission matrix (EEM) fluorescence intensities of the effluents were also gradually reduced. Therefore, fluorescence peaks have been identified, for the first time, as appropriate surrogates to assess the photodegradation of PPCPs. The humic-like fluorescence peak is linked to direct photolysis-labile PPCPs, such as naproxen, ronidazole, diclofenac, ornidazole, tinidazole, chloramphenicol, flumequine, ciprofloxacin, methadone, and dimetridazole. The tyrosine-like EEM peak is associated with HO•/CO3•--labile PPCPs, such as trimethoprim, ibuprofen, gemfibrozil, atenolol, carbamazepine, and cephalexin. The tryptophan-like peak is associated with 3EfOM*-labile PPCPs, such as clenbuterol, metoprolol, venlafaxine, bisphenol A, propranolol, ractopamine, salbutamol, roxithromycin, clarithromycin, azithromycin, famotidine, terbutaline, and erythromycin. The reduction in EEM fluorescence correlates well with the removal of PPCPs, allowing a model to be constructed. The solar-driven removal of EEM fluorescence was applied to predict the attenuation of 11 PPCPs in five field samples. A close correlation between the predicted results and the experimental results suggests that fluorescence may be a suitable surrogate for monitoring the solar-driven photodegradation of PPCPs in effluents.


Asunto(s)
Fluorescencia , Aguas Residuales , Cosméticos , Radical Hidroxilo , Preparaciones Farmacéuticas , Fotólisis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua
10.
Environ Sci Technol ; 51(3): 1213-1223, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-27998057

RESUMEN

Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ18O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales/química , Agua Subterránea/química , Modelos Teóricos , Edulcorantes , Contaminantes Químicos del Agua
11.
Environ Monit Assess ; 189(2): 73, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28116606

RESUMEN

The Mississippi River drainage basin includes the Illinois, Missouri, Ohio, Tennessee, and Arkansas rivers. These rivers drain areas with different physiography, population centers, and land use, with each contributing a different suites of metals and wastewater contaminants that can affect water quality. In July 2012, we determined 18 elements (Be, Rb, Sr, Cd, Cs, Ba, Tl, Pb, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) and chlorophyll-a (Chl-a) in the five major tributaries and in the Upper Mississippi River. The following summer, we determined both trace elements and 25 trace organic compounds at 10 sites in a longitudinal study of the main stem of the Mississippi River from Grafton, Illinois to Natchez, Mississippi. We detected wastewater contaminants, including pharmaceuticals and endocrine disrupting compounds, throughout the river system, with the highest concentrations occurring near urban centers (St. Louis and Memphis). Concentrations were highest for atrazine (673 ng L-1), DEET (540 ng L-1), TCPP (231 ng L-1), and caffeine (202 ng L-1). The Illinois, Missouri, and Yazoo rivers, which drain areas with intense agriculture, had relatively high concentrations of Chl-a and atrazine. However, the Ohio River delivered higher loads of contaminants to the Mississippi River, including an estimated 177 kg day-1 of atrazine, due to higher flow volumes. Concentrations of heavy metals (Ni, V, Co, Cu, Cd, and Zn) were relatively high in the Illinois River and low in the Ohio River, although dissolved metal concentrations were below US EPA maximum contaminant levels for surface water. Multivariate analysis demonstrated that the rivers can be distinguished based on elemental and contaminant profiles.


Asunto(s)
Atrazina/análisis , Clorofila/análisis , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Herbicidas/análisis , Metales Pesados/análisis , Compuestos Orgánicos/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Clorofila A , Estudios Longitudinales , Medio Oeste de Estados Unidos , Ríos/química , Estaciones del Año , Aguas Residuales/análisis , Calidad del Agua
12.
Bull Environ Contam Toxicol ; 99(5): 531-541, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28951956

RESUMEN

Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Agua Dulce , Estaciones del Año , Urbanización , Contaminación del Agua/análisis , Contaminación del Agua/estadística & datos numéricos , Calidad del Agua
13.
Prog Polym Sci ; 81: 209-237, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29937599

RESUMEN

Conventional water resources in many regions are insufficient to meet the water needs of growing populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent advancements in membrane technology have allowed for the reclamation of municipal wastewater for the production of drinking water, i.e., potable reuse. Although public perception can be a challenge, potable reuse is often the least energy-intensive method of providing additional drinking water to water stressed regions. A variety of membranes have been developed that can remove water contaminants ranging from particles and pathogens to dissolved organic compounds and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical stability, permeability, thickness and mechanical strength, vary between membranes and applications. Advancements in membrane technology including new membrane materials, coatings, and manufacturing methods, as well as emerging membrane processes such as membrane bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to provide a comprehensive summary of the role of polymeric membranes in the treatment of wastewater to potable water quality and highlight recent advancements in separation processes. Beyond membranes themselves, this review covers the background and history of potable reuse, and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation processes. Key trends in membrane technology include novel configurations, materials and fouling prevention techniques. Challenges still facing membrane-based potable reuse applications, including chemical and biological contaminant removal, membrane fouling, and public perception, are highlighted as areas in need of further research and development.

14.
J Pharmacol Exp Ther ; 358(2): 246-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27233293

RESUMEN

Hepatic multidrug resistance-associated protein 2 (MRP2) provides the biliary elimination pathway for many xenobiotics. Disruption of this pathway contributes to retention of these compounds and may ultimately lead to adverse drug reactions. MRP2 mislocalization from the canalicular membrane has been observed in nonalcoholic steatohepatitis (NASH), the late stage of nonalcoholic fatty liver disease, which is characterized by fat accumulation, oxidative stress, inflammation, and fibrosis. MRP2/Mrp2 mislocalization is observed in both human NASH and the rodent methionine and choline-deficient (MCD) diet model, but the extent to which it impacts overall transport capacity of MRP2 is unknown. Pemetrexed is an antifolate chemotherapeutic indicated for non-small cell lung cancer, yet its hepatobiliary elimination pathway has yet to be determined. The purpose of this study was to quantify the loss of Mrp2 function in NASH using an obligate Mrp2 transport substrate. To determine whether pemetrexed is an obligate Mrp2 substrate, its cumulative biliary elimination was compared between wild-type and Mrp2(-/-) rats. No pemetrexed was detected in the bile of Mrp2(-/-) rats, indicating pemetrexed is completely reliant on Mrp2 function for biliary elimination. Comparing the biliary elimination of pemetrexed between MCD and control animals identified a transporter-dependent decrease in biliary excretion of 60% in NASH. This study identifies Mrp2 as the exclusive biliary elimination mechanism for pemetrexed, making it a useful in vivo probe substrate for Mrp2 function, and quantifying the loss of function in NASH. This mechanistic feature may provide useful insight into the impact of NASH on interindividual variability in response to pemetrexed.


Asunto(s)
Eliminación Hepatobiliar , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Pemetrexed/farmacología , Pemetrexed/farmacocinética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
15.
Chem Res Toxicol ; 29(2): 227-34, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26771051

RESUMEN

Methylglyoxal (MG) is a highly reactive dicarbonyl compound involved in the formation of advanced glycation endproducts (AGE). Levels of MG are elevated in patients with type-2 diabetes mellitus (T2DM), and AGE have been implicated in the progression of diabetic complications. The antihyperglycemic drug metformin (MF) has been suggested to be a scavenger of MG. The present work examined and characterized unequivocally the resulting scavenged product from the metformin-MG reaction. The primary product was characterized by (1)H, (13)C, 2D-HSQC, and HMBC NMR and tandem mass spectrometry. X-ray diffraction analysis determined the structure of the metformin and MG-derived imidazolinone compound as (E)-1,1-dimethyl-2-(5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl)guanidine (IMZ). A LC-MS/MS multiple reaction monitoring method was developed to detect and quantify the presence of IMZ in metformin-treated T2DM patients. Urine from >90 MF-treated T2DM patients was analyzed, with increased levels of MF directly correlating with elevations in IMZ. Urinary MF was detected in the range of 0.17 µM to 23.0 mM, and simultaneous measurement of IMZ concentrations were in the range of 18.8 nM to 4.3 µM. Since plasma concentrations of MG range from 40 nM to 4.5 µM, the level of IMZ production may be of therapeutic significance. Thus, in addition to lowering hepatic gluconeogenesis, metformin also scavenges the highly reactive MG in vivo, thereby reducing potentially detrimental MG protein adducts, with subsequent reductions in diabetic complications.


Asunto(s)
Hipoglucemiantes/metabolismo , Metformina/metabolismo , Piruvaldehído/química , Adulto , Anciano , Anciano de 80 o más Años , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Imidazolinas/orina , Masculino , Metformina/química , Metformina/uso terapéutico , Persona de Mediana Edad , Conformación Molecular , Piruvaldehído/sangre , Espectrometría de Masas en Tándem , Adulto Joven
16.
Environ Sci Technol ; 50(6): 2870-80, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26840181

RESUMEN

Numerous studies have identified the presence and bioactivity of glucocorticoid receptor (GR) active substances in water; however, the identification and activity-balance of GR compounds remained elusive. This study determined the occurrence and attenuation of GR bioactivity and closed the balance by determining those substances responsible. The observed in vitro GR activity ranged from 39 to 155 ng dexamethasone-equivalent/L (ng Dex-EQ/L) in the secondary effluents of four wastewater treatment plants. Monochromatic ultraviolet light of 80 mJ/cm(2) disinfection dose was efficient for GR activity photolysis, whereas chlorination could not appreciably attenuate the observed GR activity. Ozonation was effective only at relatively high dose (ozone/TOC 1:1). Microfiltration membranes were not efficient for GR activity attenuation; however, reverse osmosis removed GR activity to levels below the limits of detection. A high-sensitivity liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was then developed to screen 27 GR agonists. Twelve were identified and quantified in effluents at summed concentrations of 9.6-21.2 ng/L. The summed Dex-EQ of individual compounds based on their measured concentrations was in excellent agreement with the Dex-EQ obtained from bioassay, which demonstrated that the detected glucocorticoids can entirely explain the observed GR bioactivity. Four synthetic glucocorticoids (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) predominantly accounted for GR activity. These data represent the first known publication where a complete activity balance has been determined for GR agonists in an aquatic environment.


Asunto(s)
Bioensayo/métodos , Glucocorticoides/química , Receptores de Glucocorticoides/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Cromatografía Liquida , Ozono/análisis , Receptores de Glucocorticoides/metabolismo , Espectrometría de Masas en Tándem , Aguas Residuales/química
17.
Environ Sci Technol ; 50(3): 1437-46, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26735364

RESUMEN

Cylindrospermopsin (CYN) is a potent toxic alkaloid produced by a number of cyanobacteria frequently found in lakes and reservoirs used as drinking water sources. We report for the first time detailed pathways for the degradation of CYN by treatment with ozone. This was accomplished by use of ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF MS), which revealed that CYN is readily degraded by ozone with at least 36 transformation products. Structural similarities among the major products indicated that the carbon-carbon double bond in the uracil ring of CYN was most susceptible to attack by ozone. Furthermore, the nitrogen functionality associated with the tricyclic guanidine moiety is also involved via a degradation pathway that has not been previously observed. To assess the potential toxicity of ozonation products of CYN, the cytotoxicity of CYN and the mixture of its ozonation products was measured in a human hepatoma cell line (HepG2). The IC50 for CYN at 24 and 48 h incubations was approximately 64.1 and 12.5 µM, respectively; however, the ozonation products of CYN did not exhibit measurable cytotoxicity to human cells. The results indicate ozone is an effective and practical method for CYN attenuation in water treatment without formation of overtly toxic transformation products.


Asunto(s)
Oxidantes/química , Ozono/química , Uracilo/análogos & derivados , Contaminantes del Agua/química , Alcaloides , Toxinas Bacterianas , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cianobacterias , Toxinas de Cianobacterias , Células Hep G2 , Humanos , Lagos , Espectrometría de Masas , Uracilo/química , Uracilo/toxicidad , Contaminantes del Agua/toxicidad , Purificación del Agua/métodos
18.
Environ Sci Technol ; 50(7): 3809-19, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26909504

RESUMEN

UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Bromatos/química , Dimetilnitrosamina/química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Cinética , Modelos Teóricos , Oxidación-Reducción , Ozono/química , Rayos Ultravioleta , Aguas Residuales/análisis
19.
Med Chem Res ; 25(8): 1515-1523, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28008217

RESUMEN

The constituents of many traditional Chinese herbal remedies are currently at the forefront of modern cancer research. Baicalein, a bioactive flavone widely used in nutraceuticals and pharmaceuticals, has shown great potential in the treatment and prevention of cancer without causing severe side effects. Baicalein induces cancer cell apoptosis and cause cell cycle arrest. It shows inhibitory effects on angiogenesis, metastasis and inflammation, all of which are necessary for the promotion and progression of cancer. This review presents an overview of the anti-cancer effects and mechanisms of baicalein. In addition, the bioavailability of baicalein and approaches to improve it are summarized. Treatments of baicalein in combination with other anti-cancer agents are also mentioned.

20.
Anal Chem ; 86(1): 774-82, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24328196

RESUMEN

An evaluation of existing analytical methods used to measure contaminants of emerging concern (CECs) was performed through an interlaboratory comparison involving 25 research and commercial laboratories. In total, 52 methods were used in the single-blind study to determine method accuracy and comparability for 22 target compounds, including pharmaceuticals, personal care products, and steroid hormones, all at ng/L levels in surface and drinking water. Method biases ranged from <10% to well over 100% in both matrixes, suggesting that while some methods are accurate, others can be considerably inaccurate. In addition, the number and degree of outliers identified suggest a high degree of variability may be present between methods currently in use. Three compounds, ciprofloxacin, 4-nonylphenol (NP), and 4-tert-octylphenol (OP), were especially difficult to measure accurately. While most compounds had overall false positive rates of ≤5%, bisphenol A, caffeine, NP, OP, and triclosan had false positive rates >15%. In addition, some methods reported false positives for 17ß-estradiol and 17α-ethynylestradiol in unspiked drinking water and deionized water, respectively, at levels higher than published predicted no-effect concentrations for these compounds in the environment. False negative rates were also generally <5%; however, rates were higher for the steroid hormones and some of the more challenging compounds, such as ciprofloxacin. The elevated false positive/negative rates of some analytes emphasize the susceptibility of many current methods to blank contamination, misinterpretation of background interferences, and/or inappropriate setting of detection/quantification levels for analysis at low ng/L levels. The results of both comparisons were collectively assessed to identify parameters that resulted in the best overall method performance. Liquid chromatography-tandem mass spectrometry coupled with the calibration technique of isotope dilution were able to accurately quantify most compounds with an average bias of <10% for both matrixes. These findings suggest that this method of analysis is suitable at environmentally relevant levels for most of the compounds studied. This work underscores the need for robust, standardized analytical methods for CECs to improve data quality, increase comparability between studies, and help reduce false positive and false negative rates.


Asunto(s)
Laboratorios/normas , Extracción Líquido-Líquido/normas , Contaminantes Químicos del Agua/análisis , Extracción Líquido-Líquido/métodos , Método Simple Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA