Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 143(28): 10582-10589, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34213897

RESUMEN

Despite the enormous application potential, methods for conformal few-atomic-layer deposition on colloidal nanocrystals (NCs) are scarce. Similar to the process of lamination, we introduce a "confine and shine" strategy to homogeneously modify the different surface curvatures of plasmonic NCs with ultrathin conformal layers of diverse catalytic noble metals. This self-limited epitaxial skinlike metal growth harvests the localized surface plasmon resonance to induce reduction chemistry directly on the NC surface, confined inside hollow silica. This strategy avoids any kinetic anisotropic metal deposition. Unlike the conventional thick, anisotropic, and dendritic shells, which show severe nonradiative damping, the skinlike metal lamination preserves the key plasmonic properties of the core NCs. Consequently, the plasmonic-catalytic hybrid nanoreactors can carry out a variety of organic reactions with impressive rates.

2.
J Am Chem Soc ; 143(49): 20725-20734, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34783563

RESUMEN

Extraordinary properties of traditional hyperbolic metamaterials, not found in nature, arise from their man-made subwavelength structures causing unique light-matter interactions. However, their preparation requiring nanofabrication processes is highly challenging and merely provides nanoscale two-dimensional structures. Stabilizing their bulk forms via scalable procedures has been a sought-goal for broad applications of this technology. Herein, we report a new strategy of designing and realizing bulk metamaterials with finely tunable hyperbolic responses. We develop a facile two-step process: (1) self-assembly to obtain heterostructured nanohybrids of building blocks and (2) consolidation to convert nanohybrid powders to dense bulk pellets. Our samples have centimeter-scale dimensions typically, readily further scalable. Importantly, the thickness of building blocks and their relative concentration in bulk materials serve as a delicate means of controlling hyperbolic responses. The resulting new bulk heterostructured material system consists of the alternating h-BN and graphite/graphene nanolayers and exhibits significant modulation in both type-I and type-II hyperbolic resonance modes. It is the first example of real bulk hyperbolic metamaterials, consequently displaying the capability of tuning their responses along both in-plane and out-of-plane directions of the materials for the first time. It also distinctly interacts with unpolarized and polarized transverse magnetic and electronic beams to give unique hyperbolic responses. Our achievement can be a new platform to create various bulk metamaterials without complicated nanofabrication techniques. Our facile synthesis method using common laboratory techniques can open doors to broad-range researchers for active interdisciplinary studies for this otherwise hardly accessible technology.

3.
Adv Sci (Weinh) ; 11(2): e2305067, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949679

RESUMEN

Radiative cooling, a technology that lowers the temperature of terrestrial objects by dissipating heat into outer space, presents a promising ecologically-benign solution for sustainable cooling. Recent years witness substantial progress in radiative cooling technologies, bringing them closer to commercialization. This comprehensive review provides a structured overview of radiative cooling technologies, encompassing essential principles, fabrication techniques, and practical applications, with the goal of guiding researchers toward successful commercialization. The review begins by introducing the fundamentals of radiative cooling and the associated design strategies to achieve it. Then, various fabrication methods utilized for the realization of radiative cooling devices are thoroughly discussed. This discussion includes detailed assessments of scalability, fabrication costs, and performance considerations, encompassing both structural designs and fabrication techniques. Building upon these insights, potential fabrication approaches suitable for practical applications and commercialization are proposed. Further, the recent efforts made toward the practical applications of radiative cooling technology, including its visual appearance, switching capability, and compatibility are examined. By encompassing a broad range of topics, from fundamental principles to fabrication and applications, this review aims to bridge the gap between theoretical research and real-world implementation, fostering the advancement and widespread adoption of radiative cooling technology.

4.
Adv Mater ; 36(24): e2311785, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456592

RESUMEN

Metasurfaces are flat arrays of nanostructures that allow exquisite control of phase and amplitude of incident light. Although metasurfaces offer new active element for both fundamental science and applications, the challenge still remains to overcome their low information capacity and passive nature. Here, by integrating an inverse-designed-metasurface with oblique helicoidal cholesteric liquid crystal (ChOH), simultaneous spatial and spectral tunable metasurfaces with a high information capacity for dynamic hyperspectral holography, are demonstrated. The inverse design facilitates a single-phase map encoding of ten independent holographic images at different wavelengths. ChOH provides precise spectral modulation with narrow bandwidth and wide tunable regime in response to programmed stimuli, thus enabling dynamic switching of the multicolor holography. The results provide simple and generalizable principles for the rational design of interactive metasurfaces that will find numerous applications, including security platform.

5.
Adv Mater ; 35(43): e2206399, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36153791

RESUMEN

Over the last two decades, the capabilities of metasurfaces in light modulation with subwavelength thickness have been proven, and metasurfaces are expected to miniaturize conventional optical components and add various functionalities. Herein, various metasurface design strategies are reviewed thoroughly. First, the scalar diffraction theory is revisited to provide the basic principle of light propagation. Then, widely used design methods based on the unit-cell approach are discussed. The methods include a set of simplified steps, including the phase-map retrieval and meta-atom unit-cell design. Then, recently emerging metasurfaces that may not be accurately designed using unit-cell approach are introduced. Unconventional metasurfaces are examined where the conventional design methods fail and finally potential design methods for such metasurfaces are discussed.

6.
Adv Mater ; 35(17): e2208520, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36575136

RESUMEN

Metasurface-generated holography has emerged as a promising route for fully reproducing vivid scenes by manipulating the optical properties of light using ultra-compact devices. However, achieving multiple holographic images using a single metasurface is still difficult due to the capacity limit of a single meta-atom. In this work, an inverse design method based on gradient-descent optimization is presented to encode multiple pieces of holographic information into a single metasurface. The proposed method allows the inverse design of single-cell metasurfaces without the need for complex meta-atom design strategies, facilitating high-throughput fabrication using broadband low-loss materials. By exploiting the proposed design method, both multiplane red-green-blue (RGB) color and three-dimensional (3D) holograms are designed and experimentally demonstrated. Multiplane RGB color holograms with nine distinct holograms are achieved, which demonstrate the state-of-the-art data capacity of a phase-only metasurface. The first experimental demonstration of metasurface-generated 3D holograms with completely independent and distinct images in each plane is also presented. The current research findings provide a viable route for practical metasurface-generated holography by demonstrating the high-density holography produced by a single metasurface. It is expected to ultimately lead to optical storage, display, and full-color imaging applications.

7.
ACS Appl Mater Interfaces ; 13(18): 21119-21126, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33926186

RESUMEN

Passive daytime radiative cooling, which is a process that removes excess heat to cold space as an infinite heat sink, is an emerging technology for applications that require thermal control. Among the different structures of radiative coolers, multilayer- and photonic-structured radiative coolers that are composed of inorganic layers still need to be simple to fabricate. Herein, we describe the fabrication of a nanoparticle-mixture-based radiative cooler that exhibits highly selective infrared emission and low solar absorption. Al2O3, SiO2, and Si3N4 nanoparticles exhibit intrinsic absorption in parts of the atmospheric transparency window; facile one-step spin coating of a mixture of these nanoparticles generates a surface with selective infrared emission, which can provide a more powerful cooling effect compared to broadband emitters. The nanoparticle-based radiative cooler exhibits an extremely low solar absorption of 4% and a highly selective emissivity of 88.7% within the atmospheric transparency window owing to the synergy of the optical properties of the material. The nanoparticle mixture radiative cooler produces subambient cooling of 2.8 °C for surface cooling and 1.0 °C for space cooling, whereas the Ag film exhibits an above-ambient cooling of 1.1 °C for surface cooling and 3.4 °C for space cooling under direct sunlight.

8.
Sci Rep ; 9(1): 14093, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575903

RESUMEN

Negative refraction has generated much interest recently with its unprecedented optical phenomenon. However, a broadband negative refraction has been challenging because they mainly involve optical resonances. This paper reports the realization of broadband negative refraction in the visible spectrum by using vertically-stacked metal-dielectric multilayer structures. Such structure exploits the characteristics of the constituent metal and dielectric materials, and does not require resonance to achieve negative refraction. Broadband negative refraction (wavelength 270-1300 nm) is numerically demonstrated. Compared to conventional horizontally-stacked multilayer structures, the vertically-stacked multilayer structure has a broader range of working wavelength in the visible range, with higher transmittance. We also report a variety of material combinations with broad working wavelength. The broadband negative refraction metamaterial provides an effective way to manipulate light and may have applications in super-resolution imaging, and invisibility cloaks.

9.
ACS Appl Mater Interfaces ; 11(27): 24264-24268, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31199610

RESUMEN

Recent introduction of data-driven approaches based on deep-learning technology has revolutionized the field of nanophotonics by allowing efficient inverse design methods. In this paper, a simultaneous inverse design of materials and structure parameters of core-shell nanoparticles is achieved for the first time using deep learning of a neural network. A neural network to learn the correlation between the extinction spectra of electric and magnetic dipoles and core-shell nanoparticle designs, which include material information and shell thicknesses, is developed and trained. We demonstrate deep-learning-assisted inverse design of core-shell nanoparticles for (1) spectral tuning electric dipole resonances, (2) finding spectrally isolated pure magnetic dipole resonances, and (3) finding spectrally overlapped electric dipole and magnetic dipole resonances. Our finding paves the way for the rapid development of nanophotonics by allowing a practical utilization of deep-learning technology for nanophotonic inverse design.

10.
Sci Rep ; 7(1): 6668, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751643

RESUMEN

Nanofabrication techniques are essential for exploring nanoscience and many closely related research fields such as materials, electronics, optics and photonics. Recently, three-dimensional (3D) nanofabrication techniques have been actively investigated through many different ways, however, it is still challenging to make elaborate and complex 3D nanostructures that many researchers want to realize for further interesting physics studies and device applications. Electron beam lithography, one of the two-dimensional (2D) nanofabrication techniques, is also feasible to realize elaborate 3D nanostructures by stacking each 2D nanostructures. However, alignment errors among the individual 2D nanostructures have been difficult to control due to some practical issues. In this work, we introduce a straightforward approach to drastically increase the overlay accuracy of sub-20 nm based on carefully designed alignmarks and calibrators. Three different types of 3D nanostructures whose designs are motivated from metamaterials and plasmonic structures have been demonstrated to verify the feasibility of the method, and the desired result has been achieved. We believe our work can provide a useful approach for building more advanced and complex 3D nanostructures.

11.
Nano Converg ; 4(1): 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29291156

RESUMEN

We theoretically investigate a metasurface perfect absorber based on indium-tin-oxide as active material. Our design scheme relies on conventional metal-oxide-semiconductor model and the Drude model. Inducing a voltage into the device causes a blue-shift of 50 nm in the reflectance spectrum in the infrared region. The total thickness of the device is only 3.5% of the working wavelength λ = 2.56 µm, and the rate of reflectance change reaches 5.16 at λ = 2.56 µm. Because the material that we use has advantages of easy fabrication and fast response, our design approach can be used for numerous applications on active plasmonic sensors and filters.

12.
J Vis Exp ; (127)2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28930989

RESUMEN

The use of super-resolution imaging to overcome the diffraction limit of conventional microscopy has attracted the interest of researchers in biology and nanotechnology. Although near-field scanning microscopy and superlenses have improved the resolution in the near-field region, far-field imaging in real-time remains a significant challenge. Recently, the hyperlens, which magnifies and converts evanescent waves into propagating waves, has emerged as a novel approach to far-field imaging. Here, we report the fabrication of a spherical hyperlens composed of alternating silver (Ag) and titanium oxide (TiO2) thin layers. Unlike a conventional cylindrical hyperlens, the spherical hyperlens allows for two-dimensional magnification. Thus, incorporation into conventional microscopy is straightforward. A new optical system integrated with the hyperlens is proposed, allowing for a sub-wavelength image to be obtained in the far-field region in real time. In this study, the fabrication and imaging setup methods are explained in detail. This work also describes the accessibility and possibility of the hyperlens, as well as practical applications of real-time imaging in living cells, which can lead to a revolution in biology and nanotechnology.


Asunto(s)
Lentes , Microscopía/métodos , Nanotecnología/métodos , Microscopía/instrumentación , Nanotecnología/instrumentación
13.
Sci Rep ; 6: 38645, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924937

RESUMEN

Confining light into a sub-wavelength area has been challenging due to the natural phenomenon of diffraction. In this paper, we report deep sub-wavelength focusing via dispersion engineering based on hyperbolic metamaterials. Hyperbolic metamaterials, which can be realized by alternating layers of metal and dielectric, are materials showing opposite signs of effective permittivity along the radial and the tangential direction. They can be designed to exhibit a nearly-flat open isofrequency curve originated from the large-negative permittivity in the radial direction and small-positive one in the tangential direction. Thanks to the ultraflat dispersion relation and curved geometry of the multilayer stack, hyperlens can magnify or demagnify an incident beam without diffraction depending on the incident direction. We numerically show that hyperlens-based nanofocusing device can compress a Gaussian beam down to tens-of-nanometers of spot size in the ultraviolet (UV) and visible frequency range. We also report four types of hyperlenses using different material combinations to span the entire range of visible frequencies. The nanofocusing device based on the hyperlens, unlike conventional lithography, works under ordinary light source without complex optics system, giving rise to practical applications including truly nanoscale lithography and deep sub-wavelength scale confinement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA