Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565997

RESUMEN

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Asunto(s)
Heterópteros , Hormonas de Insectos , MicroARNs , Animales , Glycine max/genética , Heterópteros/genética , Transcriptoma , MicroARNs/genética , Perfilación de la Expresión Génica
2.
BMC Biol ; 21(1): 200, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749565

RESUMEN

BACKGROUND: Lepidoptera (butterflies and moths) is one of the most geographically widespread insect orders in the world, and its species play important and diverse ecological and applied roles. Climate change is one of the biggest challenges to biodiversity this century, and lepidopterans are vulnerable to climate change. Temperature-dependent gene expression differences are of relevance under the ongoing climate crisis. However, little is known about how climate affects gene expression in lepidopterans and the ecological consequences of this, particularly with respect to genes with biased expression in one of the sexes. The common yellow butterfly, Eurema hecabe (Family Pieridae), is one of the most geographically widespread lepidopterans that can be found in Asia, Africa, and Australia. Nevertheless, what temperature-dependent effects there may be and whether the effects differ between the sexes remain largely unexplored. RESULTS: Here, we generated high-quality genomic resources for E. hecabe along with transcriptomes from eight developmental stages. Male and female butterflies were subjected to varying temperatures to assess sex-specific gene expression responses through mRNA and microRNA transcriptomics. We find that there are more temperature-dependent sex-biased genes in females than males, including genes that are involved in a range of biologically important functions, highlighting potential ecological impacts of increased temperatures. Further, by considering available butterfly data on sex-biased gene expression in a comparative genomic framework, we find that the pattern of sex-biased gene expression identified in E. hecabe is highly species-specific, rather than conserved across butterfly species, suggesting that sex-biased gene expression responses to climate change are complex in butterflies. CONCLUSIONS: Our study lays the foundation for further understanding of differential responses to environmental stress in a widespread lepidopteran model and demonstrates the potential complexity of sex-specific responses of lepidopterans to climate change.


Asunto(s)
Mariposas Diurnas , Femenino , Masculino , Animales , Mariposas Diurnas/genética , Temperatura , Genómica , Australia , Biodiversidad
3.
Proc Biol Sci ; 290(2009): 20231563, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876192

RESUMEN

Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.


Asunto(s)
Cnidarios , Anémonas de Mar , Animales , Anémonas de Mar/genética , Genes Homeobox , Filogenia , Evolución Molecular , Familia de Multigenes
4.
PLoS Biol ; 18(9): e3000636, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32991578

RESUMEN

The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs-including species-specific microRNA arm switching-providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes-and in particular the reconstruction of the myriapod ancestral situation-for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely.


Asunto(s)
Adaptación Biológica/genética , Artrópodos , Evolución Molecular , Genoma/genética , Animales , Artrópodos/clasificación , Artrópodos/genética , Secuencia de Bases , Elementos Transponibles de ADN/genética , Genes Homeobox , Genoma de los Insectos , Insectos/clasificación , Insectos/genética , MicroARNs/genética , Filogenia , Sintenía
5.
Genomics ; 114(3): 110366, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413434

RESUMEN

Ilex asprella is a widely used herbs in Traditional Chinese Medicine for treating viral infection and relieving inflammation. Due to the earlier fruiting period of I. asprella, it is the major food source for frugivores in summer. Despite its pharmacological and ecological importance, a reference genome for I. asprella is lacking. By using Illumina, stLFR and Omni-C sequencing data, we present the first chromosomal-level assembly for I. asprella. The genome assembly size is 804 Mbp, with Benchmarking Universal Single-Copy Orthologs (BUSCO) score 94.4% for eudicotyledon single copy genes. Transcriptomes of leaves, stems, flowers, premature fruits and roots were analyzed, providing 39,215 gene models. The complete set of genes involved in the triterpenoids production is disclosed for the first time. We have also found the oxidosqualene cyclases (OSCs), CYP716s and UDP-glycosyltransferases (UGTs), which are responsible for the modification of triterpenoid backbones, resulting in the high variety of triterpenoid saponins.


Asunto(s)
Ilex , Saponinas , Triterpenos , Triterpenos/metabolismo , Ilex/genética , Ilex/metabolismo , Antivirales/farmacología , Transcriptoma , Raíces de Plantas/metabolismo , Saponinas/metabolismo
6.
Genomics ; 114(4): 110440, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35905835

RESUMEN

The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.


Asunto(s)
Lepidópteros , MicroARNs , Mariposas Nocturnas , Animales , Elementos Transponibles de ADN , Lepidópteros/genética , Mariposas Nocturnas/genética , Árboles/genética
7.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682678

RESUMEN

The sesquiterpenoid hormone juvenile hormone (JH) controls development, reproduction, and metamorphosis in insects, and has long been thought to be confined to the Insecta. While it remains true that juvenile hormone is specifically synthesized in insects, other types or forms of sesquiterpenoids have also been discovered in distantly related animals, such as the jellyfish. Here, we combine the latest literature and annotate the sesquiterpenoid biosynthetic pathway genes in different animal genomes. We hypothesize that the sesquiterpenoid hormonal system is an ancestral system established in an animal ancestor and remains widespread in many animals. Different animal lineages have adapted different enzymatic routes from a common pathway, with cnidarians producing farnesoic acid (FA); non-insect protostomes and non-vertebrate deuterostomes such as cephalochordate and echinoderm synthesizing FA and methyl farnesoate (MF); and insects producing FA, MF, and JH. Our hypothesis revolutionizes the current view on the sesquiterpenoids in the metazoans, and forms a foundation for a re-investigation of the roles of this important and yet neglected type of hormone in different animals.


Asunto(s)
Hormonas Juveniles , Sesquiterpenos , Animales , Vías Biosintéticas , Insectos/metabolismo , Hormonas Juveniles/metabolismo , Metamorfosis Biológica , Sesquiterpenos/metabolismo
8.
Sci Data ; 11(1): 46, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184675

RESUMEN

The crocodilians include true crocodiles, alligators, caimans, and gharial, and the trade of crocodilian products is regulated in accordance with the Convention of Wild Fauna and Flora (CITES). Hong Kong does not have her own wild crocodilians; thus, all crocodilians meat available is presumably imported with proper license. Here, we obtained a dataset of cytochrome oxidase I (COI) gene markers of 114 crocodilian meat samples (including frozen and dried crocodilian meat products) available in the contemporary market. We have also validated these barcodes in a phylogenetic approach with other data deposited on the GenBank, and detected 112 samples belonging to four crocodile species Crocodylus siamensis, C. porosus, C. niloticus and Alligator mississippiensis, and 2 samples belonging to snake Malayopython reticulatus. The dataset generated in this study will be useful for further studies including meat inspection, illegal trading, and enhancement of international and local legislations on illegal reptile importation.


Asunto(s)
Caimanes y Cocodrilos , Carne , Animales , Caimanes y Cocodrilos/genética , ADN , Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones/genética , Hong Kong , Filogenia
9.
Nat Commun ; 13(1): 3010, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637228

RESUMEN

Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures.


Asunto(s)
Artrópodos , Transferencia de Gen Horizontal , Animales , Artrópodos/genética , Quilópodos , Genoma/genética , Filogenia
10.
Front Cell Dev Biol ; 10: 900321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072338

RESUMEN

Cnidarians including sea anemones, corals, hydra, and jellyfishes are a group of animals well known for their regeneration capacity. However, how non-coding RNAs such as microRNAs (also known as miRNAs) contribute to cnidarian tissue regeneration is poorly understood. Here, we sequenced and assembled the genome of the sea anemone Exaiptasia pallida collected in Hong Kong waters. The assembled genome size of E. pallida is 229.21 Mb with a scaffold N50 of 10.58 Mb and BUSCO completeness of 91.1%, representing a significantly improved genome assembly of this species. The organization of ANTP-class homeobox genes in this anthozoan further supported the previous findings in jellyfishes, where most of these genes are mainly located on three scaffolds. Tentacles of E. pallida were excised, and both mRNA and miRNA were sequenced at 9 time points (0 h, 6 h, 12 h, 18 h, 1 day, 2, 3, 6, and 8 days) from regenerating tentacles. In addition to the Wnt signaling pathway and homeobox genes that are shown to be likely involved in tissue regeneration as in other cnidarians, we have shown that GLWamide neuropeptides, and for the first time sesquiterpenoid pathway genes could potentially be involved in the late phase of cnidarian tissue regeneration. The established sea anemone model will be useful for further investigation of biology and evolution in, and the effect of climate change on this important group of animals.

11.
Gigascience ; 112022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166339

RESUMEN

BACKGROUND: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. FINDINGS: Using a combination of Illumina short-read, 10X Genomics linked-read, and Hi-C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. CONCLUSION: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.


Asunto(s)
Biomphalaria , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Biomphalaria/genética , Biomphalaria/parasitología , Vectores de Enfermedades , Humanos , Schistosoma mansoni/genética , Esquistosomiasis mansoni/parasitología
12.
Biodivers Data J ; 10: e82518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761556

RESUMEN

Background: Soil biodiversity plays important roles in nutrient recycling in both the environment and agriculture. However, they are generally understudied worldwide. To reveal the diversity of soil macrofauna in Hong Kong, here we initiated a citizen science project involving university, non-governmental organisations and secondary school students and teachers. It is envisioned that the citizen science approach used in this study could be used as a demonstration to future biodiversity sampling and monitoring studies. New information: Throughout a year of monitoring and species sampling across different localities in Hong Kong, 150 soil macrofaunal morphospecies were collected. Eighty five of them were further identified by morphology and DNA barcoding was assigned to each identified morphospecies, yielding a total of 646 DNA barcodes, with new millipede sequences deposited to the GenBank. The soil macrofauna morphospecies in Hong Kong found in this study are mainly dominated by millipedes (23 out of 150) and oligochaetes (15 out of 150). Amongst the twenty three identified millipedes, two polyxenid millipedes, Monographisqueenslandica Huynh & Veenstra, 2013 and Alloproctoidesremyi Marquet and Condé, 1950 are first recorded in Hong Kong. Information has been curated on an online platform and database (http://biodiversity.sls.cuhk.edu.hk/millipedes). A postcard summarising the findings of millipedes in Hong Kong has also been made as a souvenir and distributed to citizen participants. The identified macrofauna morphospecies and their 646 DNA barcodes in this study established a solid foundation for further research in soil biodiversity.

13.
Peptides ; 146: 170643, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34461138

RESUMEN

Scorpion venom contains a cocktail of differing peptides and proteins. Previous studies focused on the identification of species-specific components in scorpion venoms, and whether there could be peptides and/or proteins conserved in the venom gland of a scorpion ancestor has been rarely investigated. Here, using a combination of transcriptomic and proteomic approaches, putative conserved toxins from the venom glands of scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus were identified and compared. Similar to other studies, more than half of the conserved toxins are predominantly proteins including proteases. On the other hand, unique venom peptides, including ion channel toxins were revealed specifically in the M. martensii. The sodium channel toxin peptides revealed in M. martensii consolidated that scorpions in the Buthidae are able to envenomate their prey wih highly neurotoxic venom. This study suggested that these conserved proteins had already formed part of the arsenal in the venom gland of the common ancestor of scorpions, and likely perform important functional roles in envenomation during scorpion evolution.


Asunto(s)
Péptidos/química , Proteómica/métodos , Venenos de Escorpión/química , Escorpiones/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Animales , Ontología de Genes , Masculino , Escorpiones/anatomía & histología , Escorpiones/clasificación , Homología de Secuencia de Aminoácido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA