Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Behav Pharmacol ; 32(2&3): 123-141, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33595954

RESUMEN

Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, represent the leading cause of disability worldwide. Nevertheless, the current pharmacotherapy has several limitations, and a large portion of patients do not respond appropriately to it or remain with disabling symptoms overtime. Traditionally, pharmacological interventions for psychiatric disorders modulate dysfunctional neurotransmitter systems. In the last decades, compelling evidence has advocated for chronic inflammatory mechanisms underlying these disorders. Therefore, the repurposing of anti-inflammatory agents has emerged as an attractive therapeutic tool for mental disorders. Minocycline (MINO) and doxycycline (DOXY) are semisynthetic second-generation tetracyclines with neuroprotective and anti-inflammatory properties. More recently, the most promising results obtained in clinical trials using tetracyclines for major psychiatric disorders were for schizophrenia. In a reverse translational approach, tetracyclines inhibit microglial reactivity and toxic inflammation by mechanisms related to the inhibition of nuclear factor kappa B signaling, cyclooxygenase 2, and matrix metalloproteinases. However, the molecular mechanism underlying the effects of these tetracyclines is not fully understood. Therefore, the present review sought to summarize the latest findings of MINO and DOXY use for major psychiatric disorders and present the possible targets to their molecular and behavioral effects. In conclusion, tetracyclines hold great promise as (ready-to-use) agents for being used as adjunctive therapy for human neuropsychiatric disorders. Hence, the understanding of their molecular mechanisms may contribute to the discovery of new targets for the rational drug design of novel psychoactive agents.


Asunto(s)
Diseño de Fármacos , Trastornos Mentales/tratamiento farmacológico , Tetraciclinas/farmacología , Animales , Antiinflamatorios/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Trastornos Mentales/fisiopatología , Terapia Molecular Dirigida , Fármacos Neuroprotectores/farmacología , Investigación Biomédica Traslacional/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38386042

RESUMEN

Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.

3.
Eur Neuropsychopharmacol ; 42: 57-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191076

RESUMEN

Immune-inflammatory mechanisms are involved in the pathophysiology of bipolar disorder. Tetracyclines present neuroprotective actions based on their anti-inflammatory and microglia suppressant effects. Doxycycline (DOXY) is a tetracycline that demonstrates a better usage profile with protective actions against inflammation and CNS injury. Here, we investigated the effects of DOXY against behavioral, neuroinflammatory, and pro-oxidative changes induced by the d-amphetamine mania model. Adult mice were given d-amphetamine 2.0 mg/kg or saline for 14 days. Between days 8 and 14, received lithium, DOXY (25 or 50 mg/kg), or their combination (lithium+DOXY) on both doses. We collected the brain areas prefrontal cortex (PFC), hippocampus, and amygdala to evaluate inflammatory and oxidative alterations. D-amphetamine induced hyperlocomotion and impairment in recognition and working memory. Lithium reversed hyperlocomotion but could not restore cognitive alterations. DOXY alone (at both doses) or combined with lithium reversed d-amphetamine-induced cognitive changes. DOXY, better than lithium, reversed the d-amphetamine-induced rise in TNFα, MPO, and lipid peroxidation. DOXY reduced the hippocampal expression of Iba1 (a marker of microglial activation), inducible nitric oxide synthase (iNOS), and nitrite. Combined with lithium, DOXY increased the phosphorylated (inactivated) form of GSK3ß (Ser9). Therefore, DOXY alone or combined with lithium reversed cognitive impairment and neuroinflammation induced by the mice's d-amphetamine model. This study points to DOXY as a promising adjunctive tool for bipolar disorder treatment focused on cognition and neuroimmune changes. Our data provide the first rationale for clinical trials investigating DOXY therapeutic actions in bipolar disorder mania.


Asunto(s)
Trastorno Bipolar , Disfunción Cognitiva , Animales , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Dextroanfetamina/farmacología , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Reposicionamiento de Medicamentos , Manía , Ratones , Enfermedades Neuroinflamatorias , Estrés Oxidativo
4.
Artículo en Inglés | MEDLINE | ID: mdl-31954756

RESUMEN

Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 µg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Dextroanfetamina/toxicidad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Liraglutida/administración & dosificación , Litio/administración & dosificación , Manía/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Animales , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/psicología , Sinergismo Farmacológico , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Manía/inducido químicamente , Manía/psicología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA