Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FEBS Lett ; 581(4): 667-72, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17258206

RESUMEN

Frataxin is present in mitochondria of all eukaryotes as well as in the cytoplasm of bacteria. In humans, reduced expression of frataxin is associated with Friedreich's ataxia, a recessive inherited neurodegenerative and cardiac disorder leading to reduced life expectancy. Experimental evidences suggest that frataxin acts as an iron-chaperone protein, donating iron to the proteins involved in [Fe-S] cluster assembly and heme synthesis. It also possibly contributes to the process of iron detoxification and storage. The frataxin homolog from Arabidopsis thaliana (AtFH) is a single nuclear-encoded gene targeted to mitochondria and sharing 65% similarity with animal frataxin. In the present work, we show that the knocking out of AtFH gene causes arrest of Arabidopsis embryo development at the globular stage. Consistently with that, we also show by in situ hybridization that AtFH is expressed, in wt Arabidopsis plants, in ovule primordia as well as in embryos at various stages of development, suggesting a key role of plant frataxin during embryogenesis.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Eliminación de Gen , Proteínas de Unión a Hierro/genética , Semillas/embriología , Semillas/genética , Arabidopsis/citología , Segregación Cromosómica , ADN Bacteriano/genética , Flores/citología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Heterocigoto , Mutagénesis Insercional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/citología , Frataxina
2.
Plant Physiol Biochem ; 45(12): 898-907, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17980612

RESUMEN

Ferritins are iron-storage proteins involved in the regulation of free iron levels in the cells. Arabidopsis thaliana AtFer1 ferritin, one of the best characterized plant ferritin isoforms to date, strongly accumulates upon treatment with excess iron, via a nitric oxide-mediated pathway. However other environmental factors, such as exposure to oxidative stress or to pathogen attack, as well as developmental factors regulate AtFer1 transcript levels. In particular, recent findings have highlighted an accumulation of the ferritin transcript during senescence. To investigate the physiological relevance of AtFer1 ferritin during senescence we isolated an Arabidopsis mutant knock-out in the AtFer1 gene, which we named atfer1-2. We analyzed it together with a second, independent AtFer1 KO mutant, the atfer1-1 mutant. Interestingly, both atfer1-1 and atfer1-2 mutants show symptoms of accelerated natural senescence; the precocious leaf yellowing is accompanied by accelerated decrease of maximal photochemical efficiency and chlorophyll degradation. However, no accelerated senescence upon dark treatment was observed in the atfer1 mutants with respect to their wt. These results suggest that AtFer1 ferritin isoform is functionally involved in events leading to the onset of age-dependent senescence in Arabidopsis and that its iron-detoxification function during senescence is required when reactive oxygen species accumulate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ferritinas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cartilla de ADN/genética , ADN de Plantas/genética , Ferritinas/genética , Marcación de Gen , Genes de Plantas , Hierro/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Factores de Tiempo
3.
J Plant Physiol ; 161(7): 777-83, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15310066

RESUMEN

Past studies investigating the regulatory functions of nitric oxide (NO) in plant cells have utilized various NO-donors that release NO in different redox forms, which has lead to problems in the interpretation of data. In the present study, the effects of different NO-donors releasing NO with either NO+ (SNP) or NO' (SNAP, GSNO, NOC-18) character have been compared in plant cells. In particular, ferritin regulation, programmed cell death, cellular redox state, and ROS-scavenging enzymes in Arabidopsis thaliana and Nicotiana tabacum cells were examined. The results show that SNP behaves differently than the other NO-donors tested; indeed, SNP induces accumulation of ferritin transcripts in Arabidopsis, whereas SNAP inhibits its accumulation. Moreover, among the assortment of donors tested, only SNP caused programmed cell death and suppression of ROS-scavenging systems.


Asunto(s)
Apoptosis/efectos de los fármacos , Ferritinas/metabolismo , Donantes de Óxido Nítrico/farmacología , Penicilamina/análogos & derivados , Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Células Cultivadas , Ferritinas/efectos de los fármacos , Ferritinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Óxido Nítrico/biosíntesis , Nitroprusiato/farmacología , Compuestos Nitrosos/farmacología , Oxidación-Reducción/efectos de los fármacos , Penicilamina/farmacología , Células Vegetales , Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , S-Nitrosoglutatión/farmacología , Nicotiana/citología , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo
5.
Trends Plant Sci ; 17(1): 47-55, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22093370

RESUMEN

Micronutrient deficiencies are responsible for so-called 'hidden undernutrition'. In particular, iron (Fe) deficiency adversely affects growth, immune function and can cause anaemia. However, supplementation of iron can exacerbate infectious diseases and current policies of iron therapy carefully evaluate the risks and benefits of these interventions. Here we review the approaches of biofortification of valuable crops for reducing 'hidden undernutrition' of iron in the light of the latest nutritional and medical advances. The increase of iron and prebiotics in edible parts of plants is expected to improve health, whereas the reduction of phytic acid concentration, in crops valuable for human diet, might be less beneficial for the developed countries, or for the developing countries exposed to endemic infections.


Asunto(s)
Alimentos Fortificados , Deficiencias de Hierro , Hierro de la Dieta/administración & dosificación , Micronutrientes/deficiencia , Plantas/química , Anemia Ferropénica/prevención & control , Productos Agrícolas/química , Humanos , Hierro de la Dieta/farmacocinética , Ácido Fítico/metabolismo , Plantas Modificadas Genéticamente , Prebióticos
6.
J Plant Physiol ; 168(9): 894-902, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21315474

RESUMEN

Under conditions of reduced iron availability, most frequent in calcareous soils, plants induce the "Fe Deficiency Response" to improve root Fe uptake. The transcription factor FIT is essential for such a response in strategy I plants, such as Arabidopsis thaliana. From microarray analysis of Arabidopsis roots, it is known that three different cytochrome P450 genes, CYP82C4, CYP82C3 and CYP71B5 are up-regulated under Fe deficiency through a FIT-dependent pathway. We show that, out of these three P450 genes, only CYP82C4 strongly correlates with genes involved in metal uptake/transport. The CYP82C4 promoter, unlike those of CYP82C3 and CYP71B5, contains several IDE1-like sequences (iron deficiency-responsive element) as well as an RY element. While confirming that the CYP82C4 transcript accumulates in Fe-deficient Arabidopsis seedlings, with circadian fluctuations in a light-dependent way, we also demonstrate that such accumulation is suppressed under Fe excess. Full suppression of CYP82C4 expression, as observed in the atc82c4-1 KO mutant, is associated with longer roots at the seedling stage. We propose that CYP82C4 is involved in the early Fe deficiency response, possibly through an IDE1-like mediated pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ritmo Circadiano , Sistema Enzimático del Citocromo P-450/metabolismo , Deficiencias de Hierro , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Mutagénesis Insercional , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Plantones/genética , Plantones/metabolismo
7.
Plant Physiol Biochem ; 49(5): 520-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21371898

RESUMEN

Iron has a major role in mitochondrial as well as in chloroplast metabolism, however the processes involved in organelle iron transport in plants are only partially understood. To identify mitochondrial iron transporters in Arabidopsis, we searched for proteins homologous to the Danio rerio (zebrafish) Mitoferrin2 MFRN2, a mitochondrial iron importer in non-erythroid cells. Among the identified putative Arabidopsis mitoferrinlike proteins, we focused on that one encoded by At5g42130, which we named AtMfl1 (MitoFerrinLike1). AtMfl1 expression strongly correlates with genes coding for proteins involved in chloroplast metabolism. Such an unexpected result is supported by the identification by different research groups, of the protein encoded by At5g42130 and of its homologs from various plant species in the inner chloroplastic envelope membrane proteome. Notably, neither the protein encoded by At5g42130 nor its homologs from other plant species have been identified in the mitochondrial proteome. AtMfl1 gene expression is dependent on Fe supply: AtMfl1 transcript strongly accumulates under Fe excess, moderately under Fe sufficiency and weakly under Fe deficiency. In order to understand the physiological role of AtMfl1, we isolated and characterized two independent AtMfl1 KO mutants, atmfl1-1 and atmfl1-2: both show reduced vegetative growth. When grown under conditions of Fe excess, atmfl1-1 and atmfl1-2 mutants (seedlings, rosette leaves) contain less total Fe than wt and also reduced expression of the iron storage ferritin AtFer1. Taken together, these results suggest that Arabidopsis mitoferrinlike gene AtMfl1 is involved in Fe transport into chloroplasts, under different conditions of Fe supply and that suppression of its expression alters plant Fe accumulation in various developmental stages.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , Plantones/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Ferritinas/genética , Regulación de la Expresión Génica de las Plantas , Hierro/análisis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
8.
J Plant Physiol ; 167(6): 453-60, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19959254

RESUMEN

Ferritins are iron-storage proteins which, in Arabidopsis, have a clear role in protection against oxidative stress. Plant ferritins are localized mainly in chloroplasts, but they can also be targeted to mitochondria; the ATFER4 ferritin isoform, according to bioinformatic subcellular predictors, has the highest scores for such localization in Arabidopsis. We isolated atfer4-2 mutant KO in the AtFer4 gene and we characterized it together with a second, independent mutant atfer4-1. We show that ATFER4 is indeed localized in mitochondria of Fe-treated Arabidopsis plants; when grown under Fe excess, atfer4 plants manifest, however, the same toxicity symptoms and O(2) consumption rates as wt plants. No enhanced sensitivity to oxidative conditions was observed in atfer4 seedlings exposed to salinity, osmotic stress, cold stress or oxidative stress elicited by paraquat. The growth response of roots and aerial parts in atfer4 plants under different light conditions was the same as wt. Also, the process of natural senescence, in which AtFer1 takes active part, was not perturbed in atfer4 plants. We conclude that the ATFER4 ferritin role in counteracting the environmental or developmental oxidative conditions in Arabidopsis plants is ancillary to that of the other isoforms, regardless of its mitochondrial localization.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ferritinas/fisiología , Mitocondrias/metabolismo , Plantas Modificadas Genéticamente/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Frío , Ferritinas/genética , Ferritinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Mitocondrias/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio/farmacología , Sorbitol/farmacología
9.
J Plant Physiol ; 167(18): 1598-605, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20724023

RESUMEN

In plants, the iron storage protein ferritin can be targeted to both chloroplasts and mitochondria. To investigate the role of Arabidopsis ATFER4 ferritin in mitochondrial iron trafficking, atfer4-1 and atfer4-2 mutant knock-outs for the AtFer4 gene were grown in heterotrophic suspension cultures. Both mutants showed altered cell size and morphology, reduced viability, higher H2O2 content and reduced O2 consumption rates when compared to wt. Although no reduction in total ferritin or in mitochondrial ferritin was observed in atfer4 mutants, total iron content increased in atfer4 cells and in atfer4 mitochondria. Transcript correlation analysis highlighted a partial inverse relationship between the transcript levels of the mitochondrial ferric reductase oxidase FRO3, putatively involved in mitochondrial iron import/export, and AtFer4. Consistent with this, FRO3 transcript levels were higher in atfer4 cells. We propose that the complex molecular network maintaining Fe cellular homeostasis requires, in Arabidopsis heterotrophic cells, a proper balance of the different ferritin isoforms, and that alteration of this equilibrium, such as that occurring in atfer4 mutants, is responsible for an altered Fe homeostasis resulting in a change of intraorganellar Fe trafficking.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Western Blotting , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Ferritinas/genética , Procesos Heterotróficos , Homeostasis/genética , Homeostasis/fisiología , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Plant Physiol ; 141(4): 1264-73, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16778010

RESUMEN

ELIPs (early light-induced proteins) are thylakoid proteins transiently induced during greening of etiolated seedlings and during exposure to high light stress conditions. This expression pattern suggests that these proteins may be involved in the protection of the photosynthetic apparatus against photooxidative damage. To test this hypothesis, we have generated Arabidopsis (Arabidopsis thaliana) mutant plants null for both elip genes (Elip1 and Elip2) and have analyzed their sensitivity to light during greening of seedlings and to high light and cold in mature plants. In particular, we have evaluated the extent of damage to photosystem II, the level of lipid peroxidation, the presence of uncoupled chlorophyll molecules, and the nonphotochemical quenching of excitation energy. The absence of ELIPs during greening at moderate light intensities slightly reduced the rate of chlorophyll accumulation but did not modify the extent of photoinhibition. In mature plants, the absence of ELIP1 and ELIP2 did not modify the sensitivity to photoinhibition and photooxidation or the ability to recover from light stress. This raises questions about the photoprotective function of these proteins. Moreover, no compensatory accumulation of other ELIP-like proteins (SEPs, OHPs) was found in the elip1/elip2 double mutant during high light stress. elip1/elip2 mutant plants show only a slight reduction in the chlorophyll content in mature leaves and greening seedlings and a lower zeaxanthin accumulation in high light conditions, suggesting that ELIPs could somehow affect the stability or synthesis of these pigments. On the basis of these results, we make a number of suggestions concerning the biological function of ELIPs.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Luz , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Frío , Peroxidación de Lípido , Mutación , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Xantófilas/metabolismo
11.
Planta ; 221(6): 757-65, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15744494

RESUMEN

The production and characterization of Arabidopsis plants containing a transgene in which the Arabidopsis tAPX is inserted in antisense orientation, is described. tAPX activity in these transgenic tAPX plants is around 50% of control level. The tAPX antisense plants are phenotypically indistinguishable from control plants under normal growth conditions; they show, however, enhanced sensitivity to the O2- -generating herbicide, Paraquat. Interestingly, the tAPX antisense plants show enhanced symptoms of damage when cell death is triggered through treatment with the nitric oxide-donor, SNP. These results are in accordance with the ones recently obtained with transgenic plants overexpressing tAPX; altogether, they suggest that tAPX, besides the known ROS scavenging role, is also involved in the fine changes of H2O2 concentration during signaling events.


Asunto(s)
Arabidopsis/enzimología , Óxido Nítrico/fisiología , Estrés Oxidativo/fisiología , Paraquat/farmacología , Peroxidasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Ascorbato Peroxidasas , Muerte Celular/fisiología , ADN sin Sentido , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Luz , Peroxidasas/genética , Fenotipo , Plantas Modificadas Genéticamente , Proteínas de las Membranas de los Tilacoides , Tilacoides/enzimología
12.
Plant Mol Biol ; 58(1): 41-51, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16028115

RESUMEN

Plants exposed to photoinhibitory conditions respond by accumulation of the early light-induced proteins (ELIPs) with a potential photoprotective function. In Arabidopsis thaliana two genes (Elip1 and Elip2) encode for two ELIP proteins: evidence exists that the two genes are differentially regulated but their precise function is unclear. Mutants null for one or the other Elip gene can help in elucidating ELIPs role and here we describe the expression profile of ELIP1 and ELIP2, and the phenotype of such null mutants. Both ELIPs accumulate during greening of etiolated seedlings and in mature plants the transcripts fluctuate diurnally without protein accumulation. Steady-state transcript level of both genes increases in response to high light with transcription of Elip1 much more sensitive than that of Elip2 to increasing irradiation at 22 degrees C. At 4 degrees C instead Elip2 is strongly transcribed even at growing light. Furthermore, only ELIP1 accumulates under high light at 22 degrees C while both proteins accumulate at 4 degrees C. These results indicate the existence of a differential regulation of ELIPs expression in response to light or chilling stress with mechanisms active either at transcriptional and post-transcriptional level. Phenotypically, the mutants behave as the wild type as far as sensitivity to light- or light and cold-induced short-term photoinhibition, while both ELIPs are necessary to ensure a high rate of chlorophyll accumulation during deetiolation in continuous high light.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Mutación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Western Blotting , Clorofila/metabolismo , Ritmo Circadiano , Frío , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Cinética , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Factores de Tiempo
13.
Plant J ; 30(5): 521-8, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12047627

RESUMEN

Nitric oxide (NO) is a signaling molecule that plays a critical role in the activation of innate immune and inflammatory responses in animals. During the last few years, NO has also been detected in several plant species and the increasing number of reports on its function in plants have implicated NO as an important effector of growth, development and defense. Analogously to animals, NO has been recently shown to inhibit tobacco aconitase. This suggests that NO may elevate free iron levels in the cells by converting tobacco cytoplasmic aconitase into a mRNA binding protein that negatively regulates accumulation of ferritin. We investigated the possible role of NO as a regulator of ferritin levels in Arabidopsis and found that the NO-donor sodium nitroprusside (SNP) induces accumulation of ferritin both at mRNA and protein level. Iron is not necessary for this NO-mediated ferritin transcript accumulation, since SNP is still able to induce the accumulation of ferritin transcript in Arabidopsis suspension cultures pre-treated with the iron chelants DFO or ferrozine. However, NO is required for iron-induced ferritin accumulation, as the NO scavenger CPTIO prevents ferritin transcript accumulation in Arabidopsis suspension cultures treated with iron. The pathway is ser/thr phosphatase-dependent and necessitates protein synthesis; furthermore, NO mediates ferritin regulation through the IDRS sequence of the Atfer1 promoter responsible for transcriptional repression under low iron supply. NO, by acting downstream of iron in the induction of ferritin transcript accumulation is therefore a key signaling molecule for regulation of iron homeostasis in plants.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ferritinas/metabolismo , Hierro/farmacología , Óxido Nítrico/metabolismo , Arabidopsis/genética , Ferritinas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Nitroprusiato/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Biosíntesis de Proteínas , ARN de Planta/genética , ARN de Planta/metabolismo , Elementos de Respuesta/genética
14.
Planta ; 217(5): 709-16, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12728319

RESUMEN

Four different ferritin genes have been identified in Arabidopsis thaliana, namely AtFer1, 2, 3 and 4. AtFer1, which strongly accumulates in leaves treated with excess iron, contains in its promoter an Iron- Dependent Regulatory Sequence (IDRS). The IDRS sequence is responsible for repression of AtFer1 transcription under conditions of low iron supply. Arabidopsis plants transformed with a 1,400-bp AtFer1 promoter, with either a wild-type or a mutated IDRS fused to the beta-glucuronidase (GUS) reporter gene, enabled us to analyze the activity of the AtFer1 promoter in different tissues as well as during age-dependent or dark-induced senescence. Our results show that IDRS mediates AtFer1 expression during dark-induced senescence while it does not affect AtFer1 expression during age-dependent senescence or in young seedlings. Photoinhibition promoted either by high light or chilling temperature, or wounding, does not activate the AtFer1 promoter. In contrast, AtFer2, AtFer3, AtFer4 transcript abundances are increased in response to photoinhibition and AtFer3 transcript abundance is increased upon wounding. Taken together, our results indicate that other cis-elements, different from the IDRS, regulate the territory-specific or developmental expression of AtFer1 gene. Expression of this gene appears insensitive to some of the environmental stresses tested, which instead up-regulate other members of the Arabidopsis ferritin gene family.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ferritinas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Frío , Ferritinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Hierro/farmacología , Luz , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estrés Mecánico , Factores de Tiempo
15.
Plant J ; 38(6): 940-53, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15165186

RESUMEN

Ascorbate peroxidases (APX), localized in the cytosol, peroxisomes, mitochondria and chloroplasts of plant cells, catalyze the reduction of H(2)O(2) to water by using ascorbic acid (ASA) as specific electron donor. The chloroplastic isoenzymes of APX are involved in the water-water cycle, which contributes to the photophosphorylation coupled to the photosynthetic electron transport. In order to better clarify the contribution of thylakoidal APX (tAPX) to the reactive oxygen species (ROS) scavenging activity, as well as to the fine modulation of ROS for signaling, we produced Arabidopsis lines overexpressing tAPX. These lines show an increased resistance to treatment with the O(2)(-) generating herbicide Paraquat (Pq). However, when challenged with photoinhibitory treatments at high light or low temperature, or with iron (Fe) or copper (Cu) overload, the tAPX-overexpressing lines show no increased resistance with respect to controls, indicating that in such experimental conditions, tAPX overexpression does not reinforce plant defenses against the oxidative stresses tested. Interestingly, the nitric oxide (NO)-donor sodium nitroprusside (SNP) represses accumulation of tAPX transcript; SNP also partially inhibits tAPX enzymatic activity. After treatment with SNP, the tAPX-overexpressing lines show reduced symptoms of damage with respect to control plants treated with SNP. These transgenic lines confirm that H(2)O(2) acts in partnership with NO in causing cell death and highlight the important role of tAPX in the fine modulation of H(2)O(2) for signaling.


Asunto(s)
Arabidopsis/efectos de los fármacos , Muerte Celular , Óxido Nítrico/farmacología , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Peroxidasas/metabolismo , Tilacoides/enzimología , Arabidopsis/citología , Proteínas de Arabidopsis , Ascorbato Peroxidasas , Cobre/farmacología , Resistencia a Medicamentos/fisiología , Ferritinas/genética , Ferritinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Hierro/farmacología , Peroxidasas/genética , Plantas Modificadas Genéticamente , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de las Membranas de los Tilacoides
16.
J Exp Bot ; 54(388): 1665-73, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12754266

RESUMEN

The effect of visible light on photosystem II reaction centre D1 protein in plants treated with ultraviolet-B light was studied. It was found that a 20 kDa C-terminal fragment of D1 protein generated during irradiation with ultraviolet-B light was stable when plants were incubated in the dark, but was degraded when plants were incubated in visible light. In this condition the recovery of photosynthetic activity was also observed. Even a low level of white light was sufficient to promote both further degradation of the fragment and recovery of activity. During this phase, the D1 protein is the main synthesized thylakoid polypeptide, indicating that other photosystem II proteins are recycled in the recovery process. Although both degradation of the 20 kDa fragment and resynthesis of D1 are light-dependent phenomena, they are not closely related, as degradation of the 20 kDa fragment may occur even in the absence of D1 synthesis. Comparing chemical and physical factors affecting the formation of the fragment in ultraviolet-B light and its degradation in white light, it was concluded that the formation of the fragment in ultraviolet-B light is a photochemical process, whereas the degradation of the fragment in white light is a protease-mediated process.


Asunto(s)
Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Luz , Lincomicina/farmacología , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Complejo de Proteína del Fotosistema II , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efectos de la radiación , Tilacoides/fisiología , Tilacoides/efectos de la radiación , Rayos Ultravioleta
17.
Eur J Biochem ; 271(18): 3657-64, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15355342

RESUMEN

In this work, evidence for the presence of ferritins in plant mitochondria is supplied. Mitochondria were isolated from etiolated pea stems and Arabidopsis thaliana cell cultures. The proteins were separated by SDS/PAGE. A protein, with an apparent molecular mass of approximately 25-26 kDa (corresponding to that of ferritin), was cross-reacted with an antibody raised against pea seed ferritin. The mitochondrial ferritin from pea stems was also purified by immunoprecipitation. The purified protein was analyzed by MALDI-TOF mass spectrometry and the results of both mass finger print and peptide fragmentation by post source decay assign the polypeptide sequence to the pea ferritin (P < 0.05). The mitochondrial localization of ferritin was also confirmed by immunocytochemistry experiments on isolated mitochondria and cross-sections of pea stem cells. The possible role of ferritin in oxidative stress of plant mitochondria is discussed.


Asunto(s)
Ferritinas/aislamiento & purificación , Mitocondrias/química , Células Vegetales , Proteínas de Plantas/aislamiento & purificación , Plantas/química , Arabidopsis/química , Electroforesis en Gel de Poliacrilamida , Ferritinas/química , Ferritinas/genética , Células HeLa , Humanos , Inmunohistoquímica , Microscopía Inmunoelectrónica , Peso Molecular , Pisum sativum/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Pruebas de Precipitina , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Planta ; 215(6): 940-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12355154

RESUMEN

During photosynthetic state transitions, a fraction of the major light-harvesting complex (LHCII) shuttles between photosystems II (PSII) and I (PSI), depending on whether or not it is phosphorylated. Its phosphorylation state in turn depends on the relative activity of the two photosystems, which is a function of redox state and illumination parameters. In the psae1-1 mutant of Arabidopsis thaliana (L.) Heynh., amounts of the PSI subunits E, C, D, H and L are decreased. A fraction of LHCII is stably associated with PSI when plants are exposed to low light conditions, giving rise to a high-molecular-mass protein-pigment complex detectable in native protein gels. The formation of this abnormal LHCII-PSI complex is associated with an almost complete suppression of state transitions, a drastic increase in the levels of phosphorylated LHCII under all light regimes tested, and a permanent reduction in PSII antenna size. All these observations suggest that the altered polypeptide composition of PSI perturbs the docking of phosphorylated LHCII, making psae1-1 a unique mutant for the study of PSI-LHCII interactions and additional effects of the mutation, such as a decrease in grana stacking and increased adenylate kinase activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/fisiología , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I , Arabidopsis/genética , Clorofila/metabolismo , Transporte de Electrón/fisiología , Luz , Complejos de Proteína Captadores de Luz , Mutación , Fosforilación , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Tilacoides/metabolismo , Tilacoides/ultraestructura
19.
Plant J ; 31(4): 487-97, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12182706

RESUMEN

Using the two-hybrid technique we identified a novel protein whose N-terminal 88 amino acids (aa) interact with the C-terminal regulatory domain of the plasma membrane (PM) H+-ATPase from Arabidopsis thaliana (aa 847-949 of isoform AHA1). The corresponding gene has been named Ppi1 for Proton pump interactor 1. The encoded protein is 612 aa long and rich in charged and polar residues, except for the extreme C-terminus, where it presents a hydrophobic stretch of 24 aa. Several genes in the A. thaliana genome and many ESTs from different plant species share significant similarity (50-70% at the aa level over stretches of 200-600 aa) to Ppi1. The PPI1 N-terminus, expressed in bacteria as a fusion protein with either GST or a His-tag, binds the PM H+-ATPase in overlay experiments. The same fusion proteins and the entire coding region fused to GST stimulate H+-ATPase activity. The effect of the His-tagged peptide is synergistic with that of fusicoccin (FC) and of tryptic removal of a C-terminal 10 kDa fragment. The His-tagged peptide binds also the trypsinised H+-ATPase. Altogether these results indicate that PPI1 N-terminus is able to modulate the PM H+-ATPase activity by binding to a site different from the 14-3-3 binding site and is located upstream of the trypsin cleavage site.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Portadoras/genética , ATPasas de Translocación de Protón/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteínas 14-3-3 , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Proteínas Portadoras/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Activación Enzimática/efectos de los fármacos , Glicósidos/farmacología , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Bombas de Protones/genética , Bombas de Protones/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Tripsina/farmacología , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA