Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(8): 729-744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714376

RESUMEN

Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.


Asunto(s)
Cobre , Lipoilación , Mitocondrias , Humanos , Mitocondrias/metabolismo , Cobre/metabolismo , Animales , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Metabolismo Energético
2.
Mol Cell ; 63(3): 514-25, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27453043

RESUMEN

An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and genes encoding drug targets across multiple genotoxic environments. Guided by the strongest signal, we evaluate thousands of TSG-drug combinations in HeLa cells, resulting in networks of conserved synthetic lethal interactions. Analysis of these networks reveals that interaction stability across environments and shared gene function increase the likelihood of observing an interaction in human cancer cells. Using these rules, we prioritize ∼10(5) human TSG-drug combinations for future follow-up. We validate interactions based on cell and/or patient survival, including topoisomerases with RAD17 and checkpoint kinases with BLM.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Redes Reguladoras de Genes/efectos de los fármacos , Genes Supresores de Tumor , Mutación , Medicina de Precisión/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Células HeLa , Humanos , Estimación de Kaplan-Meier , Terapia Molecular Dirigida , Fenotipo , Interferencia de ARN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Mutaciones Letales Sintéticas , Factores de Tiempo , Transfección , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/mortalidad
3.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068959

RESUMEN

The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Descubrimiento de Drogas , ADN Polimerasa Dirigida por ADN/metabolismo , Sitios de Unión , Endonucleasas/metabolismo , Cristalografía por Rayos X , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
4.
Trends Biochem Sci ; 42(3): 206-218, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27816326

RESUMEN

Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Alquilación/efectos de los fármacos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo
5.
Nucleic Acids Res ; 47(12): 6269-6286, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31287140

RESUMEN

Protein-protein interactions regulate many essential enzymatic processes in the cell. Somatic mutations outside of an enzyme active site can therefore impact cellular function by disruption of critical protein-protein interactions. In our investigation of the cellular impact of the T304I cancer mutation of DNA Polymerase ß (Polß), we find that mutation of this surface threonine residue impacts critical Polß protein-protein interactions. We show that proteasome-mediated degradation of Polß is regulated by both ubiquitin-dependent and ubiquitin-independent processes via unique protein-protein interactions. The ubiquitin-independent proteasome pathway regulates the stability of Polß in the cytosol via interaction between Polß and NAD(P)H quinone dehydrogenase 1 (NQO1) in an NADH-dependent manner. Conversely, the interaction of Polß with the scaffold protein X-ray repair cross complementing 1 (XRCC1) plays a role in the localization of Polß to the nuclear compartment and regulates the stability of Polß via a ubiquitin-dependent pathway. Further, we find that oxidative stress promotes the dissociation of the Polß/NQO1 complex, enhancing the interaction of Polß with XRCC1. Our results reveal that somatic mutations such as T304I in Polß impact critical protein-protein interactions, altering the stability and sub-cellular localization of Polß and providing mechanistic insight into how key protein-protein interactions regulate cellular responses to stress.


Asunto(s)
ADN Polimerasa beta/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Estrés Oxidativo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Línea Celular Tumoral , Cromatina/enzimología , Neoplasias del Colon/genética , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Estabilidad de Enzimas , Humanos , Mutación , NAD/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
7.
J Biol Chem ; 292(7): 3005-3015, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-27994057

RESUMEN

Accumulation of damaged DNA in hematopoietic stem cells (HSC) is associated with chromosomal abnormalities, genomic instability, and HSC aging and might promote hematological malignancies with age. Despite this, the regulatory pathways implicated in the HSC DNA damage response have not been fully elucidated. One of the sources of DNA damage is reactive oxygen species (ROS) generated by both exogenous and endogenous insults. Balancing ROS levels in HSC requires FOXO3, which is an essential transcription factor for HSC maintenance implicated in HSC aging. Elevated ROS levels result in defective Foxo3-/- HSC cycling, among many other deficiencies. Here, we show that loss of FOXO3 leads to the accumulation of DNA damage in primitive hematopoietic stem and progenitor cells (HSPC), associated specifically with reduced expression of genes implicated in the repair of oxidative DNA damage. We provide further evidence that Foxo3-/- HSPC are defective in DNA damage repair. Specifically, we show that the base excision repair pathway, the main pathway utilized for the repair of oxidative DNA damage, is compromised in Foxo3-/- primitive hematopoietic cells. Treating mice in vivo with N-acetylcysteine reduces ROS levels, rescues HSC cycling defects, and partially mitigates HSPC DNA damage. These results indicate that DNA damage accrued as a result of elevated ROS in Foxo3-/- mutant HSPC is at least partially reversible. Collectively, our findings suggest that FOXO3 serves as a protector of HSC genomic stability and health.


Asunto(s)
Daño del ADN , Proteína Forkhead Box O3/fisiología , Células Madre Hematopoyéticas/citología , Estrés Oxidativo , Acetilcisteína/farmacología , Animales , Ciclo Celular/fisiología , Proteína Forkhead Box O3/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
8.
J Biol Chem ; 292(6): 2470-2484, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28003368

RESUMEN

Recent genome-wide studies found that patients with hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels suffer from Kaufman oculocerebrofacial syndrome (KOS, also reported as blepharophimosis-ptosis-intellectual disability syndrome). The primary cause of KOS is autosomal recessive mutations in the gene UBE3B However, to date, there are no studies that have determined the cellular or enzymatic function of UBE3B. Here, we report that UBE3B is a mitochondrion-associated protein with homologous to the E6-AP Cterminus (HECT) E3 ubiquitin ligase activity. Mutating the catalytic cysteine (C1036A) or deleting the entire HECT domain (amino acids 758-1068) results in loss of UBE3B's ubiquitylation activity. Knockdown of UBE3B in human cells induces changes in mitochondrial morphology and physiology, a decrease in mitochondrial volume, and a severe suppression of cellular proliferation. We also discovered that UBE3B interacts with calmodulin via its N-terminal isoleucine-glutamine (IQ) motif. Deletion of the IQ motif (amino acids 29-58) results in loss of calmodulin binding and a significant increase in the in vitro ubiquitylation activity of UBE3B. In addition, we found that changes in calcium levels in vitro disrupt the calmodulin-UBE3B interaction. These studies demonstrate that UBE3B is an E3 ubiquitin ligase and reveal that the enzyme is regulated by calmodulin. Furthermore, the modulation of UBE3B via calmodulin and calcium implicates a role for calcium signaling in mitochondrial protein ubiquitylation, protein turnover, and disease.


Asunto(s)
Calmodulina/metabolismo , Mitocondrias/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Humanos , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
9.
Chem Res Toxicol ; 31(6): 510-519, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29799191

RESUMEN

Bisphenol A (BPA) is used heavily in the production of polycarbonate plastics, thermal receipt paper, and epoxies. Ubiquitous exposure to BPA has been linked to obesity, diabetes, and breast and reproductive system cancers. Resistance to chemotherapeutic agents has also been shown in cancer cell models. Here, we investigated BPA's ability to confer resistance to camptothecin (CPT) in mouse embryonic fibroblasts (MEFs). MEFs are sensitive to CPT; however, co-exposure of BPA with CPT improved cell survival. Co-exposure significantly reduced Top1-DNA adducts, decreasing chromosomal aberrations and DNA strand break formation. This decrease occurs despite BPA treatment increasing the protein levels of Top1. By examining chromatin structure after BPA exposure, we determined that widespread compaction and loss of nuclear volume occurs. Therefore, BPA reduced CPT activity by reducing the accessibility of DNA to Top1, inhibiting DNA adduct formation, the generation of toxic DNA strand breaks, and improving cell survival.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Compuestos de Bencidrilo/farmacología , Camptotecina/farmacología , Fibroblastos/efectos de los fármacos , Fenoles/farmacología , Inhibidores de Topoisomerasa I/farmacología , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Aductos de ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Fibroblastos/citología , Inestabilidad Genómica , Ratones
10.
Nucleic Acids Res ; 44(17): 8199-215, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27298254

RESUMEN

Here, we investigate the role of the budding yeast Shu complex in promoting homologous recombination (HR) upon replication fork damage. We recently found that the Shu complex stimulates Rad51 filament formation during HR through its physical interactions with Rad55-Rad57. Unlike other HR factors, Shu complex mutants are primarily sensitive to replicative stress caused by MMS and not to more direct DNA breaks. Here, we uncover a novel role for the Shu complex in the repair of specific MMS-induced DNA lesions and elucidate the interplay between HR and translesion DNA synthesis. We find that the Shu complex promotes high-fidelity bypass of MMS-induced alkylation damage, such as N3-methyladenine, as well as bypassing the abasic sites generated after Mag1 removes N3-methyladenine lesions. Furthermore, we find that the Shu complex responds to ssDNA breaks generated in cells lacking the abasic site endonucleases. At each lesion, the Shu complex promotes Rad51-dependent HR as the primary repair/tolerance mechanism over error-prone translesion DNA polymerases. Together, our work demonstrates that the Shu complex's promotion of Rad51 pre-synaptic filaments is critical for high-fidelity bypass of multiple replication-blocking lesion.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Alquilación , Camptotecina/farmacología , Cisplatino/farmacología , Daño del ADN/genética , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Hongos/biosíntesis , Epistasis Genética/efectos de los fármacos , Etopósido/farmacología , Genes Fúngicos , Sitios Genéticos , Recombinación Homóloga/genética , Humanos , Peróxido de Hidrógeno/farmacología , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Modelos Biológicos , Mutación/genética , Tasa de Mutación , Unión Proteica/efectos de los fármacos , Radiación Ionizante , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta
11.
J Biol Chem ; 290(9): 5868-80, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25586183

RESUMEN

15-Hydroxyprostaglandin dehydrogenase (15PGDH) is the primary enzyme catalyzing the conversion of hydroxylated arachidonic acid species to their corresponding oxidized metabolites. The oxidation of hydroxylated fatty acids, such as the conversion of prostaglandin (PG) E2 to 15-ketoPGE2, by 15PGDH is viewed to inactivate signaling responses. In contrast, the typically electrophilic products can also induce anti-inflammatory and anti-proliferative responses. This study determined that hydroxylated docosahexaenoic acid metabolites (HDoHEs) are substrates for 15PGDH. Examination of 15PGDH substrate specificity was conducted in cell culture (A549 and primary human airway epithelia and alveolar macrophages) using chemical inhibition and shRNA knockdown of 15PGDH. Substrate specificity is broad and relies on the carbon position of the acyl chain hydroxyl group. 14-HDoHE was determined to be the optimal DHA substrate for 15PGDH, resulting in the formation of its electrophilic metabolite, 14-oxoDHA. Consistent with this, 14-HDoHE was detected in bronchoalveolar lavage cells of mild to moderate asthmatics, and the exogenous addition of 14-oxoDHA to primary alveolar macrophages inhibited LPS-induced proinflammatory cytokine mRNA expression. These data reveal that 15PGDH-derived DHA metabolites are biologically active and can contribute to the salutary signaling actions of Ω-3 fatty acids.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Lípidos/química , Transducción de Señal , Líquido del Lavado Bronquioalveolar/citología , Línea Celular Tumoral , Células Cultivadas , Citocinas/genética , Ácidos Docosahexaenoicos/metabolismo , Células Epiteliales/metabolismo , Ácidos Grasos Insaturados/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Hidroxilación , Hidroxiprostaglandina Deshidrogenasas/genética , Lipopolisacáridos/farmacología , Macrófagos Alveolares/citología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Oxidación-Reducción , Interferencia de ARN , Sistema Respiratorio/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad por Sustrato
12.
Mol Cell ; 29(4): 413-5, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18313379
13.
Nucleic Acids Res ; 42(4): 2330-45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24293652

RESUMEN

Reactive oxygen species (ROS)-induced DNA damage is repaired by the base excision repair pathway. However, the effect of chromatin structure on BER protein recruitment to DNA damage sites in living cells is poorly understood. To address this problem, we developed a method to specifically produce ROS-induced DNA damage by fusing KillerRed (KR), a light-stimulated ROS-inducer, to a tet-repressor (tetR-KR) or a transcription activator (TA-KR). TetR-KR or TA-KR, bound to a TRE cassette (∼ 90 kb) integrated at a defined genomic locus in U2OS cells, was used to induce ROS damage in hetero- or euchromatin, respectively. We found that DNA glycosylases were efficiently recruited to DNA damage in heterochromatin, as well as in euchromatin. PARP1 was recruited to DNA damage within condensed chromatin more efficiently than in active chromatin. In contrast, recruitment of FEN1 was highly enriched at sites of DNA damage within active chromatin in a PCNA- and transcription activation-dependent manner. These results indicate that oxidative DNA damage is differentially processed within hetero or euchromatin.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Eucromatina/metabolismo , Heterocromatina/metabolismo , Línea Celular , Cromatina/metabolismo , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , Eucromatina/enzimología , Endonucleasas de ADN Solapado/metabolismo , Genoma , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/efectos de la radiación , Heterocromatina/enzimología , Humanos , Rayos Láser , Oxidación-Reducción , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Elementos de Respuesta , Transactivadores/genética , Transactivadores/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(21): 8644-9, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650391

RESUMEN

Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.


Asunto(s)
Aldehído Deshidrogenasa/biosíntesis , Glioma/enzimología , Glucólisis , Células Madre Mesenquimatosas/enzimología , Proteínas de Neoplasias/biosíntesis , Células Madre Neoplásicas/enzimología , Transducción de Señal , Aldehído Deshidrogenasa/genética , Aldehído Oxidorreductasas , Animales , Proliferación Celular , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Trasplante Heterólogo , Células Tumorales Cultivadas
15.
Nucleic Acids Res ; 41(15): 7332-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23761438

RESUMEN

Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase ß (Polß) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polß in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polß in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polß misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.


Asunto(s)
Cisplatino/farmacología , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Epistasis Genética , Regulación Neoplásica de la Expresión Génica , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mapeo de Interacción de Proteínas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Pruebas de Toxicidad
16.
Stem Cells ; 31(6): 1051-63, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23404835

RESUMEN

Glioblastoma multiforme (GBM) is a life-threatening brain tumor. Accumulating evidence suggests that eradication of glioma stem-like cells (GSCs) in GBM is essential to achieve cure. The transcription factor FOXM1 has recently gained attention as a master regulator of mitotic progression of cancer cells in various organs. Here, we demonstrate that FOXM1 forms a protein complex with the mitotic kinase MELK in GSCs, leading to phosphorylation and activation of FOXM1 in a MELK kinase-dependent manner. This MELK-dependent activation of FOXM1 results in a subsequent increase in mitotic regulatory genes in GSCs. MELK-driven FOXM1 activation is regulated by the binding and subsequent trans-phosphorylation of FOXM1 by another kinase PLK1. Using mouse neural progenitor cells (NPCs), we found that transgenic expression of FOXM1 enhances, while siRNA-mediated gene silencing diminishes neurosphere formation, suggesting that FOXM1 is required for NPC growth. During tumorigenesis, FOXM1 expression sequentially increases as cells progress from NPCs, to pretumorigenic progenitors and GSCs. The antibiotic Siomycin A disrupts MELK-mediated FOXM1 signaling with a greater sensitivity in GSC compared to neural stem cell. Treatment with the first-line chemotherapy agent for GBM, Temozolomide, paradoxically enriches for both FOXM1 (+) and MELK (+) cells in GBM cells, and addition of Siomycin A to Temozolomide treatment in mice harboring GSC-derived intracranial tumors enhances the effects of the latter. Collectively, our data indicate that FOXM1 signaling through its direct interaction with MELK regulates key mitotic genes in GSCs in a PLK1-dependent manner and thus, this protein complex is a potential therapeutic target for GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Factores de Transcripción Forkhead/metabolismo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Factores de Transcripción Forkhead/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Células HEK293 , Humanos , Ratones , Mitosis/efectos de los fármacos , Mitosis/genética , Mitosis/fisiología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Péptidos/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Temozolomida , Regulación hacia Arriba/efectos de los fármacos , Quinasa Tipo Polo 1
17.
Environ Mol Mutagen ; 65 Suppl 1: 57-71, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619421

RESUMEN

Gene knock-out (KO) mouse models for DNA polymerase beta (Polß) revealed that loss of Polß leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polß in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polß. Such KI mouse models have helped uncover the importance of key Polß active site residues or specific Polß enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polß protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polß protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polß.


Asunto(s)
ADN Polimerasa beta , Ratones , Animales , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Ratones Endogámicos C57BL , Reparación del ADN , Daño del ADN , Línea Celular , Ratones Noqueados
18.
Environ Mol Mutagen ; 65 Suppl 1: 4-8, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619433

RESUMEN

This Special Issue (SI) of Environmental and Molecular Mutagenesis (EMM), entitled "Inspiring Basic and Applied Research in Genome Integrity Mechanisms," is to update the community on recent findings and advances on genome integrity mechanisms with emphasis on their importance for basic and environmental health sciences. This SI includes two research articles, one brief research communication, and four reviews that highlight cutting edge research findings and perspectives, from both established leaders and junior trainees, on DNA repair mechanisms. In particular, the authors provided an updated understanding on several distinct enzymes (e.g., DNA polymerase beta, DNA polymerase theta, DNA glycosylase NEIL2) and the associated molecular mechanisms in base excision repair, nucleotide excision repair, and microhomology-mediated end joining of double-strand breaks. In addition, genome-wide sequencing analysis or site-specific mutational signature analysis of DNA lesions from environmental mutagens (e.g., UV light and aflatoxin) provide further characterization and sequence context impact of DNA damage and mutations. This SI is dedicated to the legacy of Dr. Samuel H. Wilson from the U.S. National Institute of Environmental Health Sciences at the National Institutes of Health.


Asunto(s)
Aniversarios y Eventos Especiales , Reparación del ADN , Reparación del ADN/genética , Daño del ADN/genética , ADN/genética , Mutación , Reparación del ADN por Unión de Extremidades
19.
J Mol Biol ; 436(4): 168410, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38135179

RESUMEN

Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) ß to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polß and LIGIIIα. Yet, the impact of the polß mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polß colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polß by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polß variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polß/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Ligasa (ATP) , ADN Polimerasa beta , Reparación por Escisión , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Humanos , ADN Ligasa (ATP)/química , ADN Polimerasa beta/química , Unión Proteica , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
20.
Cell Death Discov ; 10(1): 278, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862485

RESUMEN

Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+ levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+ dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+ levels. These decreased NAD+ levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+ to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA