Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inflamm Res ; 73(1): 117-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117300

RESUMEN

BACKGROUND: Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE: In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS: To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION: Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.


Asunto(s)
COVID-19 , Trombosis , Humanos , Receptor PAR-2 , SARS-CoV-2 , Células Endoteliales
2.
Clin Oral Investig ; 27(6): 2547-2563, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36538094

RESUMEN

OBJECTIVES: To date, scarce evidence exists around the application of subgingival air-polishing during treatment of severe periodontitis. The aim of this study was to evaluate the effect on the health-related and periodontitis-related subgingival microbiome of air-polishing during non-surgical treatment of deep bleeding pockets in stage III-IV periodontitis patients. MATERIALS AND METHODS: Forty patients with stage III-IV periodontitis were selected, and pockets with probing depth (PD) 5-9 mm and bleeding on probing were selected as experimental sites. All patients underwent a full-mouth session of erythritol powder supragingival air-polishing and ultrasonic instrumentation. Test group received additional subgingival air-polishing at experimental sites. Subgingival microbial samples were taken from the maxillary experimental site showing the deepest PD at baseline. Primary outcome of the first part of the present study was the 3-month change in the number of experimental sites. Additional analysis of periodontal pathogens and other sub-gingival plaque bacteria sampled at one experimental site at baseline and 3 months following treatment was performed through a real-time quantitative PCR microarray. RESULTS: In the test group, a statistical increase of some health-related species was observed (Abiotropha defectiva, Capnocytophaga sputigena, and Lautropia mirabilis), together with the decrease of pathogens such as of Actinomyces israelii, Catonella morbi, Filifactor alocis, Porphyromonas endodontalis, Sele-nomonas sputigena, Tannerella forsythia, Treponema denticola, and Treponema socranskii. In the control group, statistical significance was found only in the decrease of Filifactor alocis, Tannerella forsythia, and Treponema socranskii. CONCLUSIONS: The addition of erythritol-chlorhexidine powder seems to cause a shift of the periodontal micro-biome toward a more eubiotic condition compared to a conventional treatment. The study was registered on Clinical Trials.gov (NCT04264624). CLINICAL RELEVANCE: Subgingival air-polishing could help re-establishing a eubiotic microbioma in deep bleeding periodontal pockets after initial non-surgical treatment.


Asunto(s)
Eritritol , Periodontitis , Humanos , Polvos , Raspado Dental , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología
3.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445763

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multifactorial disease that causes increasing morbidity worldwide, and many individuals with ME/CFS symptoms remain undiagnosed due to the lack of diagnostic biomarkers. Its etiology is still unknown, but increasing evidence supports a role of herpesviruses (including HHV-6A and HHV-6B) as potential triggers. Interestingly, the infection by these viruses has been reported to impact the expression of microRNAs (miRNAs), short non-coding RNA sequences which have been suggested to be epigenetic factors modulating ME/CFS pathogenic mechanisms. Notably, the presence of circulating miRNAs in plasma has raised the possibility to use them as valuable biomarkers for distinguishing ME/CFS patients from healthy controls. Thus, this study aimed at determining the role of eight miRNAs, which were selected for their previous association with ME/CFS, as potential circulating biomarkers of the disease. Their presence was quantitatively evaluated in plasma from 40 ME/CFS patients and 20 healthy controls by specific Taqman assays, and the results showed that six out of the eight of the selected miRNAs were differently expressed in patients compared to controls; more specifically, five miRNAs were significantly upregulated (miR-127-3p, miR-142-5p, miR-143-3p, miR-150-5p, and miR-448), and one was downmodulated (miR-140-5p). MiRNA levels directly correlated with disease severity, whereas no significant correlations were observed with the plasma levels of seven pro-inflammatory cytokines or with the presence/load of HHV-6A/6B genome, as judged by specific PCR amplification. The results may open the way for further validation of miRNAs as new potential biomarkers in ME/CFS and increase the knowledge of the complex pathways involved in the ME/CFS development.


Asunto(s)
MicroARN Circulante , Síndrome de Fatiga Crónica , Herpesvirus Humano 6 , MicroARNs , Humanos , Síndrome de Fatiga Crónica/diagnóstico , MicroARN Circulante/genética , MicroARNs/genética , Citocinas , Biomarcadores , Herpesvirus Humano 6/genética
4.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047510

RESUMEN

Microbial contamination in the hospital environment is a major concern for public health, since it significantly contributes to the onset of healthcare-associated infections (HAIs), which are further complicated by the alarming level of antimicrobial resistance (AMR) of HAI-associated pathogens. Chemical disinfection to control bioburden has a temporary effect and can favor the selection of resistant pathogens, as observed during the COVID-19 pandemic. Instead, probiotic-based sanitation (probiotic cleaning hygiene system, PCHS) was reported to stably abate pathogens, AMR, and HAIs. PCHS action is not rapid nor specific, being based on competitive exclusion, but the addition of lytic bacteriophages that quickly and specifically kill selected bacteria was shown to improve PCHS effectiveness. This study aimed to investigate the effect of such combined probiotic-phage sanitation (PCHSφ) in two Italian hospitals, targeting staphylococcal contamination. The results showed that PCHSφ could provide a significantly higher removal of staphylococci, including resistant strains, compared with disinfectants (-76%, p < 0.05) and PCHS alone (-50%, p < 0.05). Extraordinary sporadic chlorine disinfection appeared compatible with PCHSφ, while frequent routine chlorine usage inactivated the probiotic/phage components, preventing PCHSφ action. The collected data highlight the potential of a biological sanitation for better control of the infectious risk in healthcare facilities, without worsening pollution and AMR concerns.


Asunto(s)
Bacteriófagos , COVID-19 , Infección Hospitalaria , Probióticos , Humanos , Saneamiento/métodos , Cloro , Pandemias , Infección Hospitalaria/prevención & control , Infección Hospitalaria/microbiología , Staphylococcus , Atención a la Salud , Probióticos/uso terapéutico
5.
J Autoimmun ; 124: 102727, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601207

RESUMEN

Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.


Asunto(s)
COVID-19/complicaciones , Infecciones por Citomegalovirus/complicaciones , Exposición Profesional/efectos adversos , Infecciones por Parvoviridae/complicaciones , Infecciones por Retroviridae/complicaciones , Infecciones por Roseolovirus/complicaciones , SARS-CoV-2 , Esclerodermia Sistémica/etiología , Citomegalovirus , Herpesvirus Humano 6 , Humanos , Parvovirus B19 Humano , Retroviridae , Esclerodermia Sistémica/virología
6.
BMC Microbiol ; 20(1): 120, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32423437

RESUMEN

BACKGROUND: The microbiome of the oral cavity is the second-largest and diverse microbiota after the gut, harboring over 700 species of bacteria and including also fungi, viruses, and protozoa. With its diverse niches, the oral cavity is a very complex environment, where different microbes preferentially colonize different habitats. Recent data indicate that the oral microbiome has essential functions in maintaining oral and systemic health, and the emergence of 16S rRNA gene next-generation sequencing (NGS) has greatly contributed to revealing the complexity of its bacterial component. However, a detailed site-specific map of oral microorganisms (including also eukaryotes and viruses) and their relative abundance is still missing. Here, we aimed to obtain a comprehensive view of the healthy oral microbiome (HOM), including its drug-resistance features. RESULTS: The oral microbiome of twenty healthy subjects was analyzed by whole-genome sequencing (WGS) and real-time quantitative PCR microarray. Sampled oral micro-habitat included tongue dorsum, hard palate, buccal mucosa, keratinized gingiva, supragingival and subgingival plaque, and saliva with or without rinsing. Each sampled oral niche evidenced a different microbial community, including bacteria, fungi, and viruses. Alpha-diversity evidenced significant differences among the different sampled sites (p < 0.0001) but not among the enrolled subjects (p = 0.876), strengthening the notion of a recognizable HOM. Of note, oral rinse microbiome was more representative of the whole site-specific microbiomes, compared with that of saliva. Interestingly, HOM resistome included highly prevalent genes conferring resistance to macrolide, lincosamides, streptogramin, and tetracycline. CONCLUSIONS: The data obtained in 20 subjects by WGS and microarray analysis provide for the first time a comprehensive view of HOM and its resistome, contributing to a deeper understanding of the composition of oral microbiome in the healthy subject, and providing an important reference for future studies, allowing to identify microbial signatures related to functional and metabolic alterations associated with diseases, potentially useful for targeted therapies and precision medicine.


Asunto(s)
Antibacterianos/farmacología , Bacterias/clasificación , Farmacorresistencia Microbiana , Hongos/clasificación , Boca/microbiología , Virus/clasificación , Secuenciación Completa del Genoma/métodos , Adulto , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Femenino , Hongos/efectos de los fármacos , Hongos/genética , Hongos/aislamiento & purificación , Genoma Bacteriano , Genoma Fúngico , Genoma Viral , Voluntarios Sanos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lincosamidas/farmacología , Macrólidos/farmacología , Masculino , Análisis por Micromatrices , Filogenia , Estreptograminas/farmacología , Tetraciclina/farmacología , Virus/efectos de los fármacos , Virus/genética , Virus/aislamiento & purificación , Adulto Joven
7.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899126

RESUMEN

Systemic sclerosis (SSc) is a severe autoimmune disorder characterized by vasculopathy and multi-organ fibrosis; its etiology and pathogenesis are still largely unknown. Herpesvirus infections, particularly by human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), have been suggested among triggers of the disease based on virological and immunological observations. However, the direct impact of HCMV and/or HHV-6 infection on cell fibrosis and apoptosis at the cell microenvironment level has not yet been clarified. Thus, this study aimed to investigate the effects of HCMV and HHV-6 infection on the induction of pro-fibrosis or pro-apoptosis conditions in primary human dermal fibroblasts, one of the relevant SSc target cells. The analysis, performed by microarray in in vitro HCMV- or HHV-6-infected vs. uninfected cells, using specific panels for the detection of the main cellular factors associated with fibrosis or apoptosis, showed that both viruses significantly modified the expression of at least 30 pro-fibrotic and 20 pro-apoptotic factors. Notably, several recognized pro-fibrotic factors were highly induced, and most of them were reported to be involved in vivo in the multifactorial and multistep pathogenic process of SSc, thus suggesting a potential role of both HCMV and HHV-6.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Infecciones por Citomegalovirus/complicaciones , Fibroblastos/patología , Fibrosis/patología , Infecciones por Herpesviridae/complicaciones , Esclerodermia Sistémica/patología , Células Cultivadas , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus/virología , Dermis/metabolismo , Dermis/patología , Dermis/virología , Fibroblastos/metabolismo , Fibroblastos/virología , Fibrosis/metabolismo , Fibrosis/virología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 6/aislamiento & purificación , Humanos , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/virología
8.
Adv Exp Med Biol ; 1214: 79-91, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31321750

RESUMEN

Antimicrobial resistance (AMR) is currently one of the main concerns for human health.Due to its rapid increase and global diffusion, several common microbial infections might become not curable in the future decades, making it impossible to apply other lifesaver therapies, such as transplant or chemotherapy.AMR is frequently observed in hospital pathogens, due to selective pressure exerted by antibiotic use, and consistently with this, in the recent years, many actions have been proposed to limit AMR spread, including hygiene measures for hospital professionals and a wiser antibiotic usage.Indeed, the hospital environment itself represents a reservoir of pathogens, whose control was so far addressed by conventional sanitation procedures, which however cannot prevent recontamination and might further favour the selection of resistant strains.Here we report the results collected by studying an innovative sanitation strategy based on the use of probiotic bacteria, capable of reducing in a stable way the surface load of pathogens and their AMR. Collected data suggest that this system might contribute significantly to AMR control and might be thus considered as one of the tools for AMR and infection prevention and control.


Asunto(s)
Infección Hospitalaria , Probióticos , Saneamiento , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Farmacorresistencia Bacteriana , Hospitales , Humanos , Saneamiento/métodos
9.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934725

RESUMEN

Healthcare-associated infections (HAIs) affect up to 15% of all hospitalized patients, representing a global concern. Major causes include the persistent microbial contamination of hospital environment, and the growing antimicrobial-resistance (AMR) of HAI-associated microbes. The hospital environment represents in fact a reservoir of potential pathogens, continuously spread by healthcare personnel, visiting persons and hospitalized patients. The control of contamination has been so far addressed by the use of chemical-based sanitation procedures, which however have limitations, as testified by the persistence of contamination itself and by the growing AMR of hospital microbes. Here we review the results collected by a microbial-based sanitation system, inspired by the microbiome balance principles, in obtaining more effective control of microbial contamination and AMR. Whatever the sanitation system used, an important aspect of controlling AMR and HAIs relates to the ability to check any variation of a microbial population rapidly and effectively, thus effective monitoring procedures are also described.


Asunto(s)
Infección Hospitalaria/microbiología , Infección Hospitalaria/terapia , Farmacorresistencia Microbiana , Microbiota , Saneamiento/métodos , Bacillus/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Microbiota/efectos de los fármacos , Probióticos/farmacología
10.
Emerg Infect Dis ; 24(9): 1752-1753, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30124425

RESUMEN

Plasmid-mediated colistin resistance driven by the mcr-1 gene is of great clinical concern. Its diffusion in the hospital environment is unknown. We detected mcr-1-driven resistance in 8.3% of Enterobacteriaceae isolates from hospital surfaces in Italy, which might represent a reservoir of threatening nosocomial pathogens.


Asunto(s)
Infección Hospitalaria/transmisión , Farmacorresistencia Bacteriana , Infecciones por Enterobacteriaceae/transmisión , Enterobacteriaceae/aislamiento & purificación , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , Enterobacteriaceae/efectos de los fármacos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Hospitales , Humanos , Italia , Pruebas de Sensibilidad Microbiana
11.
Virol J ; 14(1): 3, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28081700

RESUMEN

BACKGROUND: Human herpesviruses have been hypothesized as environmental triggers in the development of autoimmune thyroid diseases (AITD), and in particular active human herpesvirus 6A (HHV-6A) infection was detected in thyrocytes of Hashimoto's thyroiditis (HT) patients, who also show specific anti-viral immune responses. On the other hand, AITD patients display modulation of specific miRNAs in thyroid tissue and blood. We wanted to ascertain whether HHV-6A infection might be correlated to the miRNA dysregulation observed in AITD. METHODS: Human thyroid and T-cell lines were infected in vitro with HHV-6A,-6B or -7, and analysed for miRNAs expression, either by microarray or by specific RT-PCR assays detecting miRNAs associated with AITD in vivo. RESULTS: HHV-6A infection, but not -6B or -7 infections, induced a decrease in miR-155_2 expression and an increase in miR-1238 expression in thyrocytes, as well as an increase in the expression levels of several autoimmunity-associated miRNAs in T lymphocytes, including miR-16_1, miR34a, miR-130a, miR-143_1, miR-202, miR-301b, miR-302c, miR-449b, miR-451_1, and miR-1238_2. CONCLUSIONS: HHV-6A infection modulates miRNAs expression in the cell types involved in the development of AITD. Notably, our in vitro findings correlate with what observed in AITD patients, further supporting the association between HHV-6A infection and AITD development. Moreover, these effects are 6A-specific, emphasizing the differences between the two HHV-6 virus species, and suggesting diverse virus mechanisms of action and therapeutic approaches.


Asunto(s)
Herpesvirus Humano 6/crecimiento & desarrollo , MicroARNs/análisis , Linfocitos T/virología , Células Epiteliales Tiroideas/virología , Tiroiditis Autoinmune/patología , Perfilación de la Expresión Génica , Herpesvirus Humano 7/crecimiento & desarrollo , Humanos , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Microb Biotechnol ; 17(7): e14529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045894

RESUMEN

Built environments (BEs) currently represent the areas in which human beings spend most of their life. Consistently, microbes populating BEs mostly derive from human occupants and can be easily transferred from BE to occupants. The hospital microbiome is a paradigmatic example, representing a reservoir for harmful pathogens that can be transmitted to susceptible patients, causing the healthcare-associated infections (HAIs). Environmental cleaning is a crucial pillar in controlling BE pathogens and preventing related infections, and chemical disinfectants have been largely used so far towards this aim. However, despite their immediate effect, chemical-based disinfection is unable to prevent recontamination, has a high environmental impact, and can select/increase antimicrobial resistance (AMR) in treated microbes. To overcome these limitations, probiotic-based sanitation (PBS) strategies were recently proposed, built on the use of detergents added with selected probiotics able to displace surrounding pathogens by competitive exclusion. PBS was reported as an effective and low-impact alternative to chemical disinfection, providing stable rebalance of the BE microbiome and significantly reducing pathogens and HAIs compared to disinfectants, without exacerbating AMR and pollution concerns. This minireview summarizes the most significant results obtained by applying PBS in sanitary and non-sanitary settings, which overall suggest that PBS may effectively tackle the infectious risk meanwhile preventing the further spread of pathogenic and resistant microbes.


Asunto(s)
Probióticos , Humanos , Infección Hospitalaria/prevención & control , Infección Hospitalaria/microbiología , Saneamiento/métodos , Desinfección/métodos , Enfermedades Transmisibles/transmisión , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/tratamiento farmacológico , Transmisión de Enfermedad Infecciosa/prevención & control , Detergentes/farmacología , Desinfectantes/farmacología
13.
Biomedicines ; 12(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927567

RESUMEN

MicroRNAs (miRNAs) are short noncoding RNA sequences that regulate gene expression at the post-transcriptional level. They are involved in the regulation of multiple pathways, related to both physiological and pathological conditions, including autoimmune diseases, such as Systemic Sclerosis (SSc). Specifically, SSc is recognized as a complex and multifactorial disease, characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis, affecting skin and internal organs. Among predisposing environmental triggers, evidence supports the roles of oxidative stress, chemical agents, and viral infections, mostly related to those sustained by beta-herpesviruses such as HCMV and HHV-6. Dysregulated levels of miRNA expression have been found in SSc patients compared to healthy controls, at both the intra- and extracellular levels, providing a sort of miRNA signature of the SSc disease. Notably, HCMV/HHV-6 viral infections were shown to modulate the miRNA profile, often superposing that observed in SSc, potentially promoting pathological pathways associated with SSc development. This review summarizes the main data regarding miRNA alterations in SSc disease, highlighting their potential as prognostic or diagnostic markers for SSc disease, and the impact of the putative SSc etiological agents on miRNA modulation.

14.
Microorganisms ; 11(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838377

RESUMEN

Tissue fibrosis can affect every type of tissue or organ, often leading to organ malfunction; however, the mechanisms involved in this process are not yet clarified. A role has been hypothesized for Human Cytomegalovirus (HCMV) and Human Herpesvirus 6 (HHV-6) infections as triggers of systemic sclerosis (SSc), a severe autoimmune disease causing progressive tissue fibrosis, since both viruses and antiviral immune responses toward them have been detected in patients. Moreover, HCMV or HHV-6A infection was reported to increase the expression of fibrosis-associated transcriptional factors and miRNAs in human dermal fibroblasts. However, it is unlikely that they have separate effects in the infected host, as both viruses are highly prevalent in the human population. Thus, our study aimed to investigate, by quantitative real-time PCR microarray, the impact of HCMV/HHV-6A coinfection on the expression of pro-fibrotic miRNAs in coinfected cells, compared to the effect of single viruses. The results showed a possible synergistic effect of the two viruses on pro-fibrotic miRNA expression, thus suggesting that HCMV and HHV-6 may enhance each other and cooperate at inducing enhanced miRNA-driven fibrosis. These data may also suggest a possible use of virus-induced miRNAs as novel diagnostic or prognostic biomarkers for SSc and its clinical treatment.

15.
Viruses ; 15(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36851613

RESUMEN

Secretory IgA (sIgA), which may play an important role in the early defense against SARS-CoV-2 infection, were detected in the eye of COVID-19 patients. However, an evaluation of the sIgA response in the tears of vaccinated or non-vaccinated COVID-19 subjects is still lacking. Aimed at characterizing sIgA mucosal immunity in the eye, this study analyzed tear samples from 77 COVID-19 patients, including 63 vaccinated and 14 non-vaccinated subjects. The groups showed similar epidemiological features, but as expected, differences were observed in the percentage of asymptomatic/pauci-symptomatic subjects in the vaccinated vs. non-vaccinated cohort (46% and 29% of the total, respectively). Consistent with this, ocular sIgA values, evaluated by a specific quantitative ELISA assay, were remarkably different in vaccinated vs. non-vaccinated group for both frequency (69.8% vs. 57.1%, respectively) and titer (1372.3 U/mL vs. 143.7 U/mL, respectively; p = 0.01), which was significantly differently elevated depending on the type of administered vaccine. The data show for the first time significant differences of available vaccines to elicit sIgA response in the eye and suggest that quantitative tear-based sIgA tests may potentially serve as a rapid and easily accessible biomarker for the assessment of the development of a protective mucosal immunity toward SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Ojo , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina A Secretora
16.
Microbiome ; 11(1): 64, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991513

RESUMEN

BACKGROUND: The COVID-19 pandemic has highlighted the extent to which the public transportation environment, such as in subways, may be important for the transmission of potential pathogenic microbes among humans, with the possibility of rapidly impacting large numbers of people. For these reasons, sanitation procedures, including massive use of chemical disinfection, were mandatorily introduced during the emergency and remain in place. However, most chemical disinfectants have temporary action and a high environmental impact, potentially enhancing antimicrobial resistance (AMR) of the treated microbes. By contrast, a biological and eco-sustainable probiotic-based sanitation (PBS) procedure was recently shown to stably shape the microbiome of treated environments, providing effective and long-term control of pathogens and AMR spread in addition to activity against SARS-CoV-2, the causative agent of COVID-19. Our study aims to assess the applicability and impact of PBS compared with chemical disinfectants based on their effects on the surface microbiome of a subway environment. RESULTS: The train microbiome was characterized by both culture-based and culture-independent molecular methods, including 16S rRNA NGS and real-time qPCR microarray, for profiling the train bacteriome and its resistome and to identify and quantify specific human pathogens. SARS-CoV-2 presence was also assessed in parallel using digital droplet PCR. The results showed a clear and significant decrease in bacterial and fungal pathogens (p < 0.001) as well as of SARS-CoV-2 presence (p < 0.01), in the PBS-treated train compared with the chemically disinfected control train. In addition, NGS profiling evidenced diverse clusters in the population of air vs. surface while demonstrating the specific action of PBS against pathogens rather than the entire train bacteriome. CONCLUSIONS: The data presented here provide the first direct assessment of the impact of different sanitation procedures on the subway microbiome, allowing a better understanding of its composition and dynamics and showing that a biological sanitation approach may be highly effective in counteracting pathogens and AMR spread in our increasingly urbanized and interconnected environment. Video Abstract.


Asunto(s)
COVID-19 , Desinfectantes , Microbiota , Probióticos , Vías Férreas , Humanos , SARS-CoV-2/genética , Saneamiento/métodos , ARN Ribosómico 16S/genética , Pandemias/prevención & control , Estudios de Casos y Controles , Desinfectantes/farmacología
17.
Viruses ; 15(12)2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140560

RESUMEN

The mucosal immune response is recognized to be important in the early control of infection sustained by viruses with mucosal tissues as the primary site of entry and replication, such as SARS-CoV-2. Mucosal IgA has been consistently reported in the mouth and eye of SARS-CoV-2 infected subjects, where it correlated inversely with COVID-19 symptom severity. Yet, there is still scarce information on the comparative ability of the diverse SARS-CoV-2 vaccines to induce local IgA responses at the virus entry site. Thus, the aim of this study was to assess the presence of anti-SARS-CoV-2 IgA in the saliva of 95 subjects vaccinated with a booster dose and different combinations of vaccines, including mRNA-1273 (Moderna), BNT162b2 (Pfizer-BioNTech), and Vaxzevria (AstraZeneca). The results showed the presence of a mucosal response in 93.7% of vaccinated subjects, with a mean IgA titer of 351.5 ± 31.77 U/mL, strongly correlating with the serum anti-SARS-CoV-2 IgG titer (p < 0.0001). No statistically significant differences emerged between the vaccine types, although the salivary IgA titer appeared slightly higher after receiving a booster dose of the mRNA-1273 vaccine (Moderna) following two doses of BNT162b2 (Pfizer-BioNTech), compared to the other vaccine combinations. These data confirm what was previously reported at the eye level and suggest that monitoring salivary IgA may be a useful tool for driving forward vaccine design and surveillance strategies, potentially leading to novel routes of vaccine administration and boosting.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , Vacuna nCoV-2019 mRNA-1273 , SARS-CoV-2 , COVID-19/prevención & control , Inmunización , Anticuerpos Antivirales , Vacunas de ARNm , Inmunoglobulina A
18.
Microorganisms ; 11(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37630591

RESUMEN

Beach sand may act as a reservoir for potential human pathogens, posing a public health risk. Despite this, the microbiological monitoring of sand microbiome is rarely performed to determine beach quality. In this study, the sand microbial population of a Northern Adriatic Sea beach sand was profiled by microbiological (CFU counts) and molecular methods (WGS, microarray), showing significant presence of potential human pathogens including drug-resistant strains. Consistent with these results, the potential of quicklime as a restoring method was tested in vitro and on-field. Collected data showed that adding 1-3% quicklime (w/w) to sand provided an up to -99% of bacteria, fungi, and viruses, in a dose- and time-dependent manner, till 45 days post-treatment. In conclusion, data suggest that accurate monitoring of sand microbiome may be essential, besides water, to assess beach quality and safety. Moreover, first evidences of quicklime potential for sand decontamination are provided, suggesting its usage as a possible way to restore the microbiological quality of sand in highly contaminated areas.

19.
Microorganisms ; 10(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35208679

RESUMEN

The high and sometimes inappropriate use of disinfectants and antibiotics has led to alarming levels of Antimicrobial Resistance (AMR) and to high water and hearth pollution, which today represent major threats for public health. Furthermore, the current SARS-CoV-2 pandemic has deeply influenced our sanitization habits, imposing the massive use of chemical disinfectants potentially exacerbating both concerns. Moreover, super-sanitation can profoundly influence the environmental microbiome, potentially resulting counterproductive when trying to stably eliminate pathogens. Instead, environmentally friendly procedures based on microbiome balance principles, similar to what applied to living organisms, may be more effective, and probiotic-based eco-friendly sanitation has been consistently reported to provide stable reduction of both pathogens and AMR in treated-environments, compared to chemical disinfectants. Here, we summarize the results of the studies performed in healthcare settings, suggesting that such an approach may be applied successfully also to non-healthcare environments, including the domestic ones, based on its effectiveness, safety, and negligible environmental impact.

20.
Front Microbiol ; 13: 969863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966671

RESUMEN

The hospital environment significantly contributes to the onset of healthcare-associated infections (HAIs), which represent one of the most frequent complications occurring in healthcare facilities worldwide. Moreover, the increased antimicrobial resistance (AMR) characterizing HAI-associated microbes is one of the human health's main concerns, requiring the characterization of the contaminating microbial population in the hospital environment. The monitoring of surface microbiota in hospitals is generally addressed by microbial cultural isolation. However, this has some important limitations mainly relating to the inability to define the whole drug-resistance profile of the contaminating microbiota and to the long time period required to obtain the results. Hence, there is an urgent need to implement environmental surveillance systems using more effective methods. Molecular approaches, including next-generation sequencing and PCR assays, may be useful and effective tools to monitor microbial contamination, especially the growing AMR of HAI-associated pathogens. Herein, we summarize the results of our recent studies using culture-based and molecular analyses in 12 hospitals for adults and children over a 5-year period, highlighting the advantages and disadvantages of the techniques used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA