Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 29(3): 973-988, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33212302

RESUMEN

AAV-mediated gene therapy is a promising approach for treating genetic hearing loss. Replacement or editing of the Tmc1 gene, encoding hair cell mechanosensory ion channels, is effective for hearing restoration in mice with some limitations. Efficient rescue of outer hair cell function and lack of hearing recovery with later-stage treatment remain issues to be solved. Exogenous genes delivered with the adeno-associated virus (AAV)9-PHP.B capsid via the utricle transduce both inner and outer hair cells of the mouse cochlea with high efficacy. Here, we demonstrate that AAV9-PHP.B gene therapy can promote hair cell survival and successfully rescues hearing in three distinct mouse models of hearing loss. Tmc1 replacement with AAV9-PHP.B in a Tmc1 knockout mouse rescues hearing and promotes hair cell survival with equal efficacy in inner and outer hair cells. The same treatment in a recessive Tmc1 hearing-loss model, Baringo, partially recovers hearing even with later-stage treatment. Finally, dual delivery of Streptococcus pyogenes Cas9 (SpCas9) and guide RNA (gRNA) in separate AAV9-PHP.B vectors selectively disrupts a dominant Tmc1 allele and preserves hearing in Beethoven mice, a model of dominant, progressive hearing loss. Tmc1-targeted gene therapies using single or dual AAV9-PHP.B vectors offer potent and versatile approaches for treating dominant and recessive deafness.


Asunto(s)
Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Pérdida Auditiva/terapia , Proteínas de la Membrana/fisiología , ARN Guía de Kinetoplastida/genética , Animales , Femenino , Vectores Genéticos/genética , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
EMBO J ; 34(6): 798-810, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25637353

RESUMEN

Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment.


Asunto(s)
Calcio/metabolismo , Movimiento Celular/fisiología , Células Dendríticas/inmunología , Espacio Extracelular/inmunología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miosina Tipo II/metabolismo , Animales , Polaridad Celular , Cartilla de ADN/genética , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Immunoblotting , Ratones , Microscopía Fluorescente , Microscopía por Video , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Immunol Rev ; 256(1): 240-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24117825

RESUMEN

Dendritic cells (DCs) constitute a complex cell population that resides in both peripheral tissues and lymphoid organs. Their major function in tissues is to patrol their environment in search of danger-associated antigens to transport to lymph nodes and present to T lymphocytes. This process constitutes the first step of the adaptive immune response and relies on specific DC properties, including a high endocytic capacity as well as efficient motility in confined three-dimensional environments. Although cell motility has been widely studied, little is known on how the geometric characteristics of the environment influence DC migration and function. In this review, we give an overview of the basic physical principles and molecular mechanisms that control DC migration under confinement and discuss how such mechanisms impact the environment-patrolling capacity of DCs.


Asunto(s)
Movimiento Celular/inmunología , Células Dendríticas/fisiología , Animales , Antígenos/inmunología , Humanos
4.
Hear Res ; 394: 107882, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31980281

RESUMEN

Viral delivery of exogenous coding sequences into the inner ear has the potential for therapeutic benefit for patients suffering genetic or acquired hearing loss. To devise improved strategies for viral delivery, we investigated two injection techniques, round window membrane injection or a novel utricle injection method, for their ability to safely and efficiently transduce sensory hair cells and neurons of the mouse inner ear. In addition, we evaluated three synthetic AAV vectors (Anc80L65, AAV9-PHP.B, AAV2.7m8) encoding enhanced green fluorescent protein (eGFP) and three promoters (Cmv, Synapsin, Gfap) for their ability to transduce and drive expression in desired cell types. We found the utricle injection method with AAV9-PHP.B and a Cmv promoter was the most efficient combination for driving robust eGFP expression in both inner and outer hair cells. We found eGFP expression levels rose over 3-5 days post-injection, a viral dose of 1.5 × 109 gc yielded half maximal eGFP expression and that the utricle injection method yielded transduced hair cells even when delivered as late as postnatal day 16. Sensory transduction and auditory thresholds were unaltered in injected mice relative to uninjected wild-type controls. Vestibular end organs were also transduced without affecting balance behavior. The Synapsin promoter and the Gfap promoter drove strong eGFP expression in inner ear neurons and supporting cells, respectively. We conclude the AAV9-PHP.B vector and the utricle injection method are well-suited for delivery of exogenous gene constructs into inner ears of mouse models of auditory and vestibular dysfunction.


Asunto(s)
Oído Interno , Animales , Infecciones por Citomegalovirus , Dependovirus/genética , Terapia Genética , Vectores Genéticos , Células Ciliadas Auditivas Externas , Ratones , Sáculo y Utrículo , Sinapsinas/genética
5.
Nat Med ; 25(7): 1123-1130, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270503

RESUMEN

Since most dominant human mutations are single nucleotide substitutions1,2, we explored gene editing strategies to disrupt dominant mutations efficiently and selectively without affecting wild-type alleles. However, single nucleotide discrimination can be difficult to achieve3 because commonly used endonucleases, such as Streptococcus pyogenes Cas9 (SpCas9), can tolerate up to seven mismatches between guide RNA (gRNA) and target DNA. Furthermore, the protospacer-adjacent motif (PAM) in some Cas9 enzymes can tolerate mismatches with the target DNA3,4. To circumvent these limitations, we screened 14 Cas9/gRNA combinations for specific and efficient disruption of a nucleotide substitution that causes the dominant progressive hearing loss, DFNA36. As a model for DFNA36, we used Beethoven mice5, which harbor a point mutation in Tmc1, a gene required for hearing that encodes a pore-forming subunit of mechanosensory transduction channels in inner-ear hair cells6. We identified a PAM variant of Staphylococcus aureus Cas9 (SaCas9-KKH) that selectively and efficiently disrupted the mutant allele, but not the wild-type Tmc1/TMC1 allele, in Beethoven mice and in a DFNA36 human cell line. Adeno-associated virus (AAV)-mediated SaCas9-KKH delivery prevented deafness in Beethoven mice up to one year post injection. Analysis of current ClinVar entries revealed that ~21% of dominant human mutations could be targeted using a similar approach.


Asunto(s)
Alelos , Edición Génica , Pérdida Auditiva Sensorineural/prevención & control , Proteínas de la Membrana/genética , Animales , Proteína 9 Asociada a CRISPR/fisiología , Línea Celular , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/genética , Humanos , Ratones , Ratones Endogámicos C57BL
6.
Nat Commun ; 6: 7526, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26109323

RESUMEN

The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos/metabolismo , Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Miosina Tipo II/metabolismo , Ovalbúmina/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Células de la Médula Ósea , Catepsinas/genética , Catepsinas/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Masculino , Ratones , Técnicas Analíticas Microfluídicas , Miosina Tipo II/genética
7.
Mol Immunol ; 54(3-4): 423-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23428837

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the increase in the percentage of autoreactive B and T lymphocytes. Since dendritic cells (DCs) are essential for B cell and T cell function, we hypothesized that changes in DC biology may play a critical role in the pathogenesis of the disease. We analyzed the phenotype and distribution of two main DC subsets, conventional (cDC) and plasmacytoid (pDC), in lupus prone (NZW × NZB)F1 (BWF1) mice and age-matched NZW × BALB/c control mice. Our results show that both subsets of lupic DCs displayed an abnormal phenotype, characterized by an over-expression of the co-stimulatory molecules CD80, CD86, PD-L1 and PD-L2 compared with control mice. Accordingly, spleen CD4(+) T cells from lupic mice exhibit an activated phenotype characterized by a higher expression of PD-1, CD25, CD69 and increased secretion of IFN-γ and IL-10. Interestingly, lupic mice also present an increase in the percentage of cDC in peripheral blood and an increase in the percentage of pDCs in spleen and mesenteric lymph nodes (MLNs) compared with control and pre-lupic mice. Homing experiments demonstrate that lupic and pre-lupic DCs migrate preferentially to the spleen compared to DCs from control mice. This preferential recruitment and retention of DCs in the spleen is related to an altered expression of different chemokine and chemokine receptors on both, DCs and stromal cells from lupic mice. Our results suggest that this altered phenotype and migratory behavior shown by DCs from lupic mice may account for the abnormal T cell and B cell responses in lupus.


Asunto(s)
Células Dendríticas/patología , Lupus Eritematoso Sistémico/patología , Bazo/metabolismo , Células del Estroma/patología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Movimiento Celular/genética , Movimiento Celular/inmunología , Quimiocinas/genética , Quimiocinas/inmunología , Quimiocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos BALB C , Fenotipo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Bazo/inmunología , Bazo/patología , Células del Estroma/inmunología , Células del Estroma/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA