Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pathol Res Pract ; 246: 154470, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37150133

RESUMEN

The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Inmunoterapia , Neoplasias Pulmonares/patología , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1 , Estados Unidos , United States Food and Drug Administration
2.
Epigenomics ; 15(24): 1337-1358, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112013

RESUMEN

The aberrant regulation of the Notch signaling pathway, which is a fundamental developmental pathway, has been implicated in a wide range of human cancers. The Notch pathway can be activated by both canonical and noncanonical Notch ligands, and its role can switch between acting as an oncogene or a tumor suppressor depending on the context. Epigenetic modifications have the potential to modulate Notch and its ligands, thereby influencing Notch signal transduction. Consequently, the utilization of epigenetic regulatory mechanisms may present novel therapeutic opportunities for both single and combined therapeutics targeted at the Notch signaling pathway. This review offers insights into the mechanisms governing the regulation of Notch signaling and explores their therapeutic potential.


Asunto(s)
Neoplasias , Receptores Notch , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores Notch/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA