Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 90(5): 1990-2000, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345717

RESUMEN

PURPOSE: Postexercise recovery rate is a vital component of designing personalized training protocols and rehabilitation plans. Tracking exercise-induced muscle damage and recovery requires sensitive tools that can probe the muscles' state and composition noninvasively. METHODS: Twenty-four physically active males completed a running protocol consisting of a 60-min downhill run on a treadmill at -10% incline and 65% of maximal heart rate. Quantitative mapping of MRI T2 was performed using the echo-modulation-curve algorithm before exercise, and at two time points: 1 h and 48 h after exercise. RESULTS: T2 values increased by 2%-4% following exercise in the primary mover muscles and exhibited further elevation of 1% after 48 h. For the antagonist muscles, T2 values increased only at the 48-h time point (2%-3%). Statistically significant decrease in the SD of T2 values was found following exercise for all tested muscles after 1 h (16%-21%), indicating a short-term decrease in the heterogeneity of the muscle tissue. CONCLUSION: MRI T2 relaxation time constitutes a useful quantitative marker for microstructural muscle damage, enabling region-specific identification for short-term and long-term systemic processes, and sensitive assessment of muscle recovery following exercise-induced muscle damage. The variability in T2 changes across different muscle groups can be attributed to their different role during downhill running, with immediate T2 elevation occurring in primary movers, followed by delayed elevation in both primary and antagonist muscle groups, presumably due to secondary damage caused by systemic processes.


Asunto(s)
Músculo Esquelético , Carrera , Masculino , Humanos , Músculo Esquelético/diagnóstico por imagen , Carrera/fisiología , Ejercicio Físico , Imagen por Resonancia Magnética/métodos
2.
J Magn Reson Imaging ; 58(2): 642-649, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36495014

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) diagnosis is usually performed by analyzing contrast-weighted images, where pathology is detected once it reached a certain visual threshold. Computer-aided diagnosis (CAD) has been proposed as a way for achieving higher sensitivity to early pathology. PURPOSE: To compare conventional (i.e., visual) MRI assessment of artificially generated multiple sclerosis (MS) lesions in the brain's white matter to CAD based on a deep neural network. STUDY TYPE: Prospective. POPULATION: A total of 25 neuroradiologists (15 males, age 39 ± 9, 9 ± 9.8 years of experience) independently assessed all synthetic lesions. FIELD STRENGTH/SEQUENCE: A 3.0 T, T2 -weighted multi-echo spin-echo (MESE) sequence. ASSESSMENT: MS lesions of varying severity levels were artificially generated in healthy volunteer MRI scans by manipulating T2 values. Radiologists and a neural network were tasked with detecting these lesions in a series of 48 MR images. Sixteen images presented healthy anatomy and the rest contained a single lesion at eight increasing severity levels (6%, 9%, 12%, 15%, 18%, 21%, 25%, and 30% elevation in T2 ). True positive (TP) rates, false positive (FP) rates, and odds ratios (ORs) were compared between radiological diagnosis and CAD across the range lesion severity levels. STATISTICAL TESTS: Diagnostic performance of the two approaches was compared using z-tests on TP rates, FP rates, and the logarithm of ORs across severity levels. A P-value <0.05 was considered statistically significant. RESULTS: ORs of identifying pathology were significantly higher for CAD vis-à-vis visual inspection for all lesions' severity levels. For a 6% change in T2 value (lowest severity), radiologists' TP and FP rates were not significantly different (P = 0.12), while the corresponding CAD results remained statistically significant. DATA CONCLUSION: CAD is capable of detecting the presence or absence of more subtle lesions with greater precision than the representative group of 25 radiologists chosen in this study. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Masculino , Humanos , Estudios Prospectivos , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Computadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Retrospectivos
3.
NMR Biomed ; 35(12): e4807, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35899528

RESUMEN

High-resolution mapping of magnetic resonance imaging (MRI)'s transverse relaxation time (T2 ) can benefit many clinical applications by offering improved anatomic details, enhancing the ability to probe tissues' microarchitecture, and facilitating the identification of early pathology. Increasing spatial resolutions, however, decreases data's signal-to-noise ratio (SNR), particularly at clinical scan times. This impairs imaging quality, and the accuracy of subsequent radiological interpretation. Recently, principal component analysis (PCA) was employed for denoising diffusion-weighted MR images and was shown to be effective for improving parameter estimation in multiexponential relaxometry. This study combines the Marchenko-Pastur PCA (MP-PCA) signal model with the echo modulation curve (EMC) algorithm for denoising multiecho spin-echo (MESE) MRI data and improving the precision of EMC-generated single T2 relaxation maps. The denoising technique was validated on simulations, phantom scans, and in vivo brain and knee data. MESE scans were performed on a 3-T Siemens scanner. The acquired images were denoised using the MP-PCA algorithm and were then provided as input for the EMC T2 -fitting algorithm. Quantitative analysis of the denoising quality included comparing the standard deviation and coefficient of variation of T2 values, along with gold standard SNR estimation of the phantom scans. The presented denoising technique shows an increase in T2 maps' precision and SNR, while successfully preserving the morphological features of the tissue. Employing MP-PCA denoising as a preprocessing step decreases the noise-related variability of T2 maps produced by the EMC algorithm and thus increases their precision. The proposed method can be useful for a wide range of clinical applications by facilitating earlier detection of pathologies and improving the accuracy of patients' follow-up.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Relación Señal-Ruido , Análisis de Componente Principal , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
PLoS One ; 19(5): e0297244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820354

RESUMEN

Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Masculino , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA