Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 33(3): 1629-1640, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36323984

RESUMEN

OBJECTIVES: To compare the image quality and hepatic metastasis detection of low-dose deep learning image reconstruction (DLIR) with full-dose filtered back projection (FBP)/iterative reconstruction (IR). METHODS: A contrast-detail phantom consisting of low-contrast objects was scanned at five CT dose index levels (10, 6, 3, 2, and 1 mGy). A total of 154 participants with 305 hepatic lesions who underwent abdominal CT were enrolled in a prospective non-inferiority trial with a three-arm design based on phantom results. Data sets with full dosage (13.6 mGy) and low dosages (9.5, 6.8, or 4.1 mGy) were acquired from two consecutive portal venous acquisitions, respectively. All images were reconstructed with FBP (reference), IR (control), and DLIR (test). Eleven readers evaluated phantom data sets for object detectability using a two-alternative forced-choice approach. Non-inferiority analyses were performed to interpret the differences in image quality and metastasis detection of low-dose DLIR relative to full-dose FBP/IR. RESULTS: The phantom experiment showed the dose reduction potential from DLIR was up to 57% based on the reference FBP dose index. Radiation decreases of 30% and 50% resulted in non-inferior image quality and hepatic metastasis detection with DLIR compared to full-dose FBP/IR. Radiation reduction of 70% by DLIR performed inferiorly in detecting small metastases (< 1 cm) compared to full-dose FBP (difference: -0.112; 95% confidence interval [CI]: -0.178 to 0.047) and full-dose IR (difference: -0.123; 95% CI: -0.182 to 0.053) (p < 0.001). CONCLUSION: DLIR enables a 50% dose reduction for detecting low-contrast hepatic metastases while maintaining comparable image quality to full-dose FBP and IR. KEY POINTS: • Non-inferiority study showed that deep learning image reconstruction (DLIR) can reduce the dose to oncological patients with low-contrast lesions without compromising the diagnostic information. • Radiation dose levels for DLIR can be reduced to 50% of full-dose FBP and IR for detecting low-contrast hepatic metastases, while maintaining comparable image quality. • The reduction of radiation by 70% by DLIR is clinically acceptable but insufficient for detecting small low-contrast hepatic metastases (< 1 cm).


Asunto(s)
Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Fantasmas de Imagen , Estudios Prospectivos , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos
2.
Eur Radiol ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870625

RESUMEN

OBJECTIVES: The purpose of this study was to determine the influence of dose reduction on a commercially available lung cancer prediction convolutional neuronal network (LCP-CNN). METHODS: CT scans from a cohort provided by the local lung cancer center (n = 218) with confirmed pulmonary malignancies and their corresponding reduced dose simulations (25% and 5% dose) were subjected to the LCP-CNN. The resulting LCP scores (scale 1-10, increasing malignancy risk) and the proportion of correctly classified nodules were compared. The cohort was divided into a low-, medium-, and high-risk group based on the respective LCP scores; shifts between the groups were studied to evaluate the potential impact on nodule management. Two different malignancy risk score thresholds were analyzed: a higher threshold of ≥ 9 ("rule-in" approach) and a lower threshold of > 4 ("rule-out" approach). RESULTS: In total, 169 patients with 196 nodules could be included (mean age ± SD, 64.5 ± 9.2 year; 49% females). Mean LCP scores for original, 25% and 5% dose levels were 8.5 ± 1.7, 8.4 ± 1.7 (p > 0.05 vs. original dose) and 8.2 ± 1.9 (p < 0.05 vs. original dose), respectively. The proportion of correctly classified nodules with the "rule-in" approach decreased with simulated dose reduction from 58.2 to 56.1% (p = 0.34) and to 52.0% for the respective dose levels (p = 0.01). For the "rule-out" approach the respective values were 95.9%, 96.4%, and 94.4% (p = 0.12). When reducing the original dose to 25%/5%, eight/twenty-two nodules shifted to a lower, five/seven nodules to a higher malignancy risk group. CONCLUSION: CT dose reduction may affect the analyzed LCP-CNN regarding the classification of pulmonary malignancies and potentially alter pulmonary nodule management. CLINICAL RELEVANCE STATEMENT: Utilization of a "rule-out" approach with a lower malignancy risk threshold prevents underestimation of the nodule malignancy risk for the analyzed software, especially in high-risk cohorts. KEY POINTS: • LCP-CNN may be affected by CT image parameters such as noise resulting from low-dose CT acquisitions. • CT dose reduction can alter pulmonary nodule management recommendations by affecting the outcome of the LCP-CNN. • Utilization of a lower malignancy risk threshold prevents underestimation of pulmonary malignancies in high-risk cohorts.

3.
J Comput Assist Tomogr ; 47(4): 613-620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37380149

RESUMEN

ABSTRACT: Photon-counting computed tomography (PCCT) offers better high-resolution and noise performance than energy integrating detector (EID) CT. In this work, we compared both technologies for imaging of the temporal bone and skull base. A clinical PCCT system and 3 clinical EID CT scanners were used to image the American College of Radiology image quality phantom using a clinical imaging protocol with matched CTDI vol (CT dose index-volume) of 25 mGy. Images were used to characterize the image quality of each system across a series of high-resolution reconstruction options. Noise was calculated from the noise power spectrum, whereas resolution was quantified with a bone insert by calculating a task transfer function. Images of an anthropomorphic skull phantom and 2 patient cases were examined for visualization of small anatomical structures. Across measured conditions, PCCT had a comparable or smaller average noise magnitude (120 Hounsfield units [HU]) to the EID systems (144-326 HU). Photon-counting CT also had comparable resolution (task transfer function f25 : 1.60 mm -1 ) to the EID systems (1.34-1.77 mm -1 ). Imaging results supported quantitative findings as PCCT more clearly showed the 12-lp/cm bars from the fourth section of the American College of Radiology phantom and better represented the vestibular aqueduct and oval and round windows when compared with the EID scanners. A clinical PCCT system was able to image the temporal bone and skull base with improved spatial resolution and lower noise than clinical EID CT systems at matched dose.


Asunto(s)
Cabeza , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Fantasmas de Imagen , Base del Cráneo/diagnóstico por imagen , Fotones
4.
Eur Radiol ; 31(4): 1947-1955, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32997175

RESUMEN

OBJECTIVE: The purpose of this study was to determine how well radiologists could visually detect a change in lung nodule size on the basis of visual image perception alone. SUBJECTS AND METHODS: Under IRB approval, 109 standard chest CT image series were anonymized and exported from PACS. Nine hundred forty virtual lung nodule pairs (six baseline diameters, six relative volume differences, two nodule types-solid and ground glass-and 14 repeats) were digitally inserted into the chest CT image series (same location, different sizes between the pair). These digitally altered CT image pairs were shown to nine radiologists who were tasked to visually determine which image contained the larger nodule using a two-alternative forced-choice perception experimental design. These data were statistically analyzed using a generalized linear mixed effects model to determine how accurately the radiologists were able to correctly identify the larger nodule. RESULTS: Nominal baseline nodule diameter, relative volume difference, and nodule type were found to be statistically significant factors (p < 0.001) in influencing the radiologists' accuracy. For solid (ground-glass) nodules, the baseline diameter needed to be at least 6.3 mm (13.2 mm) to be able to visually detect a 25% change in volume with 95 ± 1.4% accuracy. Accuracy was lowest for the nodules with the smallest baseline diameters and smallest relative volume differences. Additionally, accuracy was lower for ground-glass nodules compared to solid nodules. CONCLUSIONS: Factors that impacted visual size assessment were baseline nodule diameter, relative volume difference, and solid versus non-solid nodule type, with larger and more solid lesions offering a more precise assessment of change. KEY POINTS: • For solid nodules, radiologists could visually detect a 25% change in volume with 95% accuracy for nodules having greater than 6.3-mm baseline diameter. • For ground-glass nodules, radiologists could visually detect a 25% change in volume with 95% accuracy for nodules having greater than 13.2-mm baseline diameter. • Accuracy in detecting a change in nodule size began to stabilize around 90-100% for nodules with larger baseline diameters (> 8 mm for solid nodules, > 12 mm for ground-glass nodules) and larger relative volume differences (>15% for solid nodules, > 25% for ground-glass nodules).


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiólogos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X
5.
J Comput Assist Tomogr ; 45(3): 421-426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33797440

RESUMEN

OBJECTIVE: The objective of this study was to assess the impact of tube voltage and image display on the identification of power ports features on anterior-posterior scout images to inform optimal workflow for multidetector computed tomography (MDCT) examinations. MATERIALS AND METHODS: Four ports, representing variable material composition (titanium/silicone), shapes, and computed tomography (CT) markings, were imaged on an adult anthropomorphic chest phantom using a dual-source MDCT at variable peak tube voltages (80, 100, 120, 150, and Sn150 kVp). Images were reviewed at variable image display setting by 5 blinded readers to assess port features of material composition, shape, and text markings as well as overall preferred image quality. RESULTS: Material composition was correctly identified for all ports by all readers across all kilovoltage-peak settings. The identification by shape was more reliable than CT markers for all but one of the ports. CT marker identification was up to 80% for titanium ports at window level settings optimized for metal (window width, 200; window center, -150) and at a soft tissue setting (window width, 400; window center, 40) for silicone ports. Interreader agreement for best image quality per kilovoltage-peak setting was moderate to substantial for 3 ports (k = 0.5-0.62) but only fair for 1 port (k = 0.27). The highest overall rank for image quality was given unanimously to Sn150 kVp for imaging titanium ports and 100 kVp for silicone ports. CONCLUSIONS: Power port identification on MDCT scout images can be optimized with modification of MDCT scout acquisition and display settings based on the main port material.


Asunto(s)
Tomografía Computarizada Multidetector/instrumentación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tórax/anatomía & histología , Adulto , Humanos , Tomografía Computarizada Multidetector/métodos , Variaciones Dependientes del Observador , Fantasmas de Imagen , Tórax/diagnóstico por imagen
6.
J Appl Clin Med Phys ; 22(10): 249-260, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34472700

RESUMEN

A novel routine dual-energy computed tomography (DECT) quality control (QC) program was developed to address the current deficiency of routine QC for this technology. The dual-energy quality control (DEQC) program features (1) a practical phantom with clinically relevant materials and concentrations, (2) a clinically relevant acquisition, reconstruction, and postprocessing protocol, and (3) a fully automated analysis software to extract quantitative data for database storage and trend analysis. The phantom, designed for easy set up for standalone or adjacent imaging next to the ACR phantom, was made in collaboration with an industry partner and informed by clinical needs to have four iodine inserts (0.5, 1, 2, and 5 mg/ml) and one calcium insert (100 mg/ml) equally spaced in a cylindrical water-equivalent background. The imaging protocol was based on a clinical DECT abdominal protocol capable of producing material specific concentration maps, virtual unenhanced images, and virtual monochromatic images. The QC automated analysis software uses open-source technologies which integrates well with our current automated CT QC database. The QC program was tested on a GE 750 HD scanner and two Siemens SOMATOM FLASH scanners over a 3-month period. The automated algorithm correctly identified the appropriate region of interest (ROI) locations and stores measured values in a database for monitoring and trend analysis. Slight variations in protocol settings were noted based on manufacturer. Overall, the project proved to provide a convenient and dependable clinical tool for routine oversight of DE CT imaging within the clinic.


Asunto(s)
Yodo , Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Fantasmas de Imagen , Control de Calidad , Tomografía Computarizada por Rayos X
7.
Radiology ; 293(3): 583-591, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31573400

RESUMEN

Background Results of recent phantom studies show that variation in CT acquisition parameters and reconstruction techniques may make radiomic features largely nonreproduceable and of limited use for prognostic clinical studies. Purpose To investigate the effect of CT radiation dose and reconstruction settings on the reproducibility of radiomic features, as well as to identify correction factors for mitigating these sources of variability. Materials and Methods This was a secondary analysis of a prospective study of metastatic liver lesions in patients who underwent staging with single-energy dual-source contrast material-enhanced staging CT between September 2011 and April 2012. Technique parameters were altered, resulting in 28 CT data sets per patient that included different dose levels, section thicknesses, kernels, and reconstruction algorithm settings. By using a training data set (n = 76), reproducible intensity, shape, and texture radiomic features (reproducibility threshold, R2 ≥ 0.95) were selected and correction factors were calculated by using a linear model to convert each radiomic feature to its estimated value in a reference technique. By using a test data set (n = 75), the reproducibility of hierarchical clustering based on 106 radiomic features measured with different CT techniques was assessed. Results Data in 78 patients (mean age, 60 years ± 10; 33 women) with 151 liver lesions were included. The percentage of radiomic features deemed reproducible for any variation of the different technical parameters was 11% (12 of 106). Of all technical parameters, reconstructed section thickness had the largest impact on the reproducibility of radiomic features (12.3% [13 of 106]) if only one technical parameter was changed while all other technical parameters were kept constant. The results of the hierarchical cluster analysis showed improved clustering reproducibility when reproducible radiomic features with dedicated correction factors were used (ρ = 0.39-0.71 vs ρ = 0.14-0.47). Conclusion Most radiomic features are highly affected by CT acquisition and reconstruction settings, to the point of being nonreproducible. Selecting reproducible radiomic features along with study-specific correction factors offers improved clustering reproducibility. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Sosna in this issue.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Algoritmos , Medios de Contraste , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Prospectivos , Reproducibilidad de los Resultados
8.
Eur Radiol ; 29(4): 2069-2078, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30276672

RESUMEN

OBJECTIVES: To assess the impact of scan- and patient-related factors on the error and the minimum detectable difference in iodine concentration among different generations of single-source (SS) fast kV-switching and dual-source (DS) dual-energy CT (DECT). METHODS: Lesions having eight different iodine concentrations (0.2-4 mgI/mL) were emulated in a 3D-printed phantom of medium and large size. Each combination of concentration and size was scanned in dual-energy mode on four different SS and DS DECTs. Radiation doses were 7 and 10 mGy (medium size) and 10, 13, and 16 mGy (large size). Iodine maps were reconstructed with filtered back projection (FBP) and vendor-specific iterative reconstruction algorithms (IRs). Absolute error of iodine quantification (E) was measured. Multivariate regression models determined the influence of CT scanner, iodine concentration, phantom size, radiation dose, and reconstruction algorithm on E. The minimum detectable difference in iodine concentration (ICmin) under the same imaging conditions (intra-conditional) and among different imaging conditions (inter-conditional) was calculated. RESULTS: The error was significantly lower in current than in previous DECT generations (p < 0.001). For all CT scanner conditions, the error was significantly higher with increasing phantom size and decreasing radiation dose (p < 0.001). Iodine concentration only significantly affected the error for SS DECT (p < 0.001). ICmin depended on patient- and scan-related factors and ranged from 0.4 to 1.5 mgI/mL. CONCLUSIONS: Patient- and scan-related factors have a significant impact on the error and minimum detectable difference in iodine concentration within and among SS fast kV-switching and DS DECT. KEY POINTS: • Patient- and scan-related factors have a significant impact on the error and minimum detectable difference in dual-energy CT-based iodine quantification. • Third-generation DECTs outperformed second-generation scanners for both single-source and dual-source dual-energy CT. • The minimum intra- and inter-conditional detectable difference in iodine concentration ranged from 0.4 to 1.5 mg iodine/mL.


Asunto(s)
Algoritmos , Yodo/análisis , Tomografía Computarizada Multidetector/métodos , Fantasmas de Imagen , Humanos , Reproducibilidad de los Resultados
9.
AJR Am J Roentgenol ; 212(3): W64-W72, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30645160

RESUMEN

OBJECTIVE: The purpose of this study was to assess the impact of high pitch values on image noise, spatial resolution, and iodine quantification in single-source wide-coverage fast-kilovoltage-switching dual-energy CT (DECT). MATERIALS AND METHODS: Two phantom experiments were conducted. First, image noise and spatial resolution in the x-, y-, and z-directions were assessed. Second, the accuracy of iodine quantification was investigated with multiple-size phantoms with pure iodine and blood-iodine inserts. Both phantoms were scanned repeatedly with a third-generation fast-kilovoltage-switching DECT scanner with a collimation width of 80 mm at four different pitch values (0.5, 0.99, 1.375, 1.53) and three different gantry rotation times (0.6, 0.8, 1.0 second). Image noise, spatial resolution, and absolute error of iodine concentration (E) were measured. A linear mixed effects model was used to determine the effect of pitch, rotation time, and size on the error of iodine concentration. RESULTS: Image noise and xy spatial resolution were comparable among the four pitch values. Spatial resolution in the z-direction was inferior and had higher variance at a low pitch of 0.5 compared with pitches of 0.99, 1.375, and 1.53. Error of iodine concentration was significantly affected by pitch and rotation time (p < 0.001). E decreased with increasing pitch and decreasing rotation time. In detail, mean E was 0.91 ± 0.47 mg I/mL for a pitch of 0.5, 0.52 ± 0.29 mg I/mL for 0.99, 0.44 ± 0.25 mg I/mL for 1.375, and 0.40 ± 0.25 mg I/mL for 1.53. CONCLUSION: High-pitch wide-coverage fast-kilovoltage-switching DECT can be performed without impairing image quality or iodine quantification, and the results are superior to those of imaging at a low pitch of 0.5.


Asunto(s)
Tomografía Computarizada por Rayos X/métodos , Humanos , Yodo , Fantasmas de Imagen , Tomógrafos Computarizados por Rayos X
10.
AJR Am J Roentgenol ; 213(4): 889-894, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31180737

RESUMEN

OBJECTIVE. Diagnostic reference levels were developed as guidance for radiation dose in medical imaging and, by inference, diagnostic quality. The objective of this work was to expand the concept of diagnostic reference levels to explicitly include noise of CT examinations to simultaneously target both dose and quality through corresponding reference values. MATERIALS AND METHODS. The study consisted of 2851 adult CT examinations performed with scanners from two manufacturers and two clinical protocols: abdominopelvic CT with IV contrast administration and chest CT without IV contrast administration. An institutional informatics system was used to automatically extract protocol type, patient diameter, volume CT dose index, and noise magnitude from images. The data were divided into five reference patient size ranges. Noise reference level, noise reference range, dose reference level, and dose reference range were defined for each size range. RESULTS. The data exhibited strong dependence between dose and patient size, weak dependence between noise and patient size, and different trends for different manufacturers with differing strategies for tube current modulation. The results suggest size-based reference intervals and levels for noise and dose (e.g., noise reference level and noise reference range of 11.5-12.9 HU and 11.0-14.0 HU for chest CT and 10.1-12.1 HU and 9.4-13.7 HU for abdominopelvic CT examinations) that can be targeted to improve clinical performance consistency. CONCLUSION. New reference levels and ranges, which simultaneously consider image noise and radiation dose information across wide patient populations, were defined and determined for two clinical protocols. The methods of new quantitative constraints may provide unique and useful information about the goal of managing the variability of image quality and dose in clinical CT examinations.


Asunto(s)
Ruido , Dosis de Radiación , Tomografía Computarizada por Rayos X/normas , Adulto , Tamaño Corporal , Medios de Contraste , Humanos , Radiografía Abdominal/normas , Radiografía Torácica/normas , Valores de Referencia
11.
AJR Am J Roentgenol ; 210(6): 1301-1308, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29702019

RESUMEN

OBJECTIVE: The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. MATERIALS AND METHODS: A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. RESULTS: On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. CONCLUSION: ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.


Asunto(s)
Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Tamaño Corporal , Interpretación Estadística de Datos , Humanos , Modelos Estadísticos , Fantasmas de Imagen , Dosis de Radiación
12.
Radiology ; 284(3): 777-787, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28170300

RESUMEN

Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Algoritmos , Neoplasias Hepáticas/diagnóstico por imagen , Tomografía Computarizada Multidetector/métodos , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/patología , Femenino , Humanos , Hígado/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Estudios Prospectivos
13.
Radiology ; 283(2): 526-537, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27935766

RESUMEN

Purpose To develop, in a phantom environment, a method to obtain multidetector computed tomographic (CT) data sets at multiple radiation exposure levels within the same patient and to validate its use for potential dose reduction by using different image reconstruction algorithms for the detection of liver metastases. Materials and Methods The American College of Radiology CT accreditation phantom was scanned by using a dual-source multidetector CT platform. By adjusting the radiation output of each tube, data sets at six radiation exposure levels (100%, 75%, 50%, 37.5%, 25%, and 12.5%) were reconstructed from two consecutive dual-source single-energy (DSSE) acquisitions, as well as a conventional single-source acquisition. A prospective, HIPAA-compliant, institutional review board-approved study was performed by using the same DSSE strategy in 19 patients who underwent multidetector CT of the liver for metastatic colorectal cancer. All images were reconstructed by using conventional weighted filtered back projection (FBP) and sinogram-affirmed iterative reconstruction with strength level of 3 (SAFIRE-3). Objective image quality metrics were compared in the phantom experiment by using multiple linear regression analysis. Generalized linear mixed-effects models were used to analyze image quality metrics and diagnostic performance for lesion detection by readers. Results The phantom experiment showed comparable image quality between DSSE and conventional single-source acquisition. In the patient study, the mean size-specific dose estimates for the six radiation exposure levels were 13.0, 9.8, 5.8, 4.4, 3.2, and 1.4 mGy. For each radiation exposure level, readers' perception of image quality and lesion conspicuity was consistently ranked superior with SAFIRE-3 when compared with FBP (P ≤ .05 for all comparisons). Reduction of up to 62.5% in radiation exposure by using SAFIRE-3 yielded similar reader rankings of image quality and lesion conspicuity when compared with routine-dose FBP. Conclusion A method was developed and validated to synthesize multidetector CT data sets at multiple radiation exposure levels within the same patient. This technique may provide a foundation for future clinical trials aimed at estimating potential radiation dose reduction by using iterative reconstructions. © RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Tomografía Computarizada Multidetector/instrumentación , Fantasmas de Imagen , Exposición a la Radiación/análisis , Radiometría/instrumentación , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada Multidetector/métodos , Atención Dirigida al Paciente/métodos , Dosis de Radiación , Exposición a la Radiación/prevención & control , Protección Radiológica/métodos , Imagen Radiográfica por Emisión de Doble Fotón/instrumentación , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Radiometría/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Radiology ; 279(1): 185-94, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26624973

RESUMEN

PURPOSE: To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). MATERIALS AND METHODS: Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. RESULTS: Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). CONCLUSION: Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.


Asunto(s)
Algoritmos , Cálculos Renales/diagnóstico por imagen , Hepatopatías/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Tomografía Computarizada Multidetector , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
16.
Radiology ; 275(3): 735-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25751228

RESUMEN

PURPOSE: To assess the effect of radiation dose reduction on low-contrast detectability by using an advanced modeled iterative reconstruction (ADMIRE; Siemens Healthcare, Forchheim, Germany) algorithm in a contrast-detail phantom with a third-generation dual-source multidetector computed tomography (CT) scanner. MATERIALS AND METHODS: A proprietary phantom with a range of low-contrast cylindrical objects, representing five contrast levels (range, 5-20 HU) and three sizes (range, 2-6 mm) was fabricated with a three-dimensional printer and imaged with a third-generation dual-source CT scanner at various radiation dose index levels (range, 0.74-5.8 mGy). Image data sets were reconstructed by using different section thicknesses (range, 0.6-5.0 mm) and reconstruction algorithms (filtered back projection [FBP] and ADMIRE with a strength range of three to five). Eleven independent readers blinded to technique and reconstruction method assessed all data sets in two reading sessions by measuring detection accuracy with a two-alternative forced choice approach (first session) and by scoring the total number of visible object groups (second session). Dose reduction potentials based on both reading sessions were estimated. Results between FBP and ADMIRE were compared by using both paired t tests and analysis of variance tests at the 95% significance level. RESULTS: During the first session, detection accuracy increased with increasing contrast, size, and dose index (diagnostic accuracy range, 50%-87%; interobserver variability, ±7%). When compared with FBP, ADMIRE improved detection accuracy by 5.2% on average across the investigated variables (P < .001). During the second session, a significantly increased number of visible objects was noted with increasing radiation dose index, section thickness, and ADMIRE strength over FBP (up to 80% more visible objects, P < .001). Radiation dose reduction potential ranged from 56% to 60% and from 4% to 80% during the two sessions, respectively. CONCLUSION: Low-contrast detectability performance increased with increasing object size, object contrast, dose index, section thickness, and ADMIRE strength. Compared with FBP, ADMIRE allows a substantial radiation dose reduction while preserving low-contrast detectability. Online supplemental material is available for this article.


Asunto(s)
Algoritmos , Medios de Contraste , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada Multidetector/instrumentación , Dosis de Radiación , Diseño de Equipo , Modelos Teóricos , Fantasmas de Imagen
17.
HCA Healthc J Med ; 5(4): 427-434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290487

RESUMEN

Background: Suicide is a major problem in the United States and in the state of Idaho. Prevention data are lacking for suicide primarily because information about those who completed suicide is not attainable. There are no published data from surveying the family members of the deceased. Our objective was to learn more about those who died by suicide by surveying family members or close contacts of the deceased. Methods: We conducted a descriptive study using a 77-question survey to obtain information about those who died by suicide, with the survey being completed by their loved ones. Survey questions addressed the deceased's demographics, employment, mental health, substance use, access to lethal means, cultural and religious beliefs, relationships, etc. The survey was distributed in Southeast Idaho for 3 months. Results: Results showed that those who died by suicide in Southeast Idaho were predominantly: White (95%), male (77%), had no previous hospitalization for mental illness (76%), had a firearm in their home (66%), their religious beliefs matched those in their family and community (73%), they did not alert others or seek medical help (79%), had attempted suicide before (55%), had high stress in their most recent relationship (55%), or had current legal issues (54%). Firearms were the most common means of death (51%). Conclusion: In Southeast Idaho, our data suggested those at the highest risk of suicide were White men who previously attempted suicide, were experiencing a relationship change, had legal trouble, and had quick access to a firearm in their home. Suicide prevention efforts should be focused on these risk factors.

18.
Phys Med ; 122: 103382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820805

RESUMEN

PURPOSE: In this work, we define a signal detection based metrology to characterize the separability of two different multi-dimensional signals in spectral CT acquisitions. METHOD: Signal response was modelled as a random process with a deterministic signal and stochastic noise component. A linear Hotelling observer was used to estimate a scalar test statistic distribution that predicts the likelihood of an intensity value belonging to a signal. Two distributions were estimated for two materials of interest and used to derive two metrics separability: a separability index (s') and the area under the curve of the test statistic distributions. Experimental and simulated data of photon-counting CT scanners were used to evaluate each metric. Experimentally, vials of iodine and gadolinium (2, 4, 8 mg/mL) were scanned at multiple tube voltages, tube currents and energy thresholds. Additionally, a simulated dataset with low tube current (10-150 mAs) and material concentrations (0.25-4 mg/mL) was generated. RESULTS: Experimental data showed that conditions favorable for low noise and expression of k-edge signal produced the highest separability. Material concentration had the greatest impact on separability. The simulated data showed that under more difficult separation conditions, difference in material concentration still had the greatest impact on separability. CONCLUSION: The results demonstrate the utility of a task specific metrology to measure the overlap in signal between different materials in spectral CT. Using experimental and simulated data, the separability index was shown to describe the relationship between image formation factors and the signal responses of material.


Asunto(s)
Tomografía Computarizada por Rayos X , Yodo , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Gadolinio/química , Fantasmas de Imagen
19.
Diagnostics (Basel) ; 14(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125461

RESUMEN

To determine the diagnostic performance of simulated reduced-dose chest CT scans regarding pulmonary T1 tumors and assess the potential impact on patient management, a repository of 218 patients with histologically proven pulmonary T1 tumors was used. Virtual reduced-dose images were simulated at 25%- and 5%-dose levels. Tumor size, attenuation, and localization were scored by two experienced chest radiologists. The impact on patient management was assessed by comparing hypothetical LungRADS scores. The study included 210 patients (41% females, mean age 64.5 ± 9.2 years) with 250 eligible T1 tumors. There were differences between the original and the 5%-but not the 25%-dose simulations, and LungRADS scores varied between the dose levels with no clear trend. Sensitivity of Reader 1 was significantly lower using the 5%-dose vs. 25%-dose vs. original dose for size categorization (0.80 vs. 0.85 vs. 0.84; p = 0.007) and segmental localization (0.81 vs. 0.86 vs. 0.83; p = 0.018). Sensitivities of Reader 2 were unaffected by a dose reduction. A CT dose reduction may affect the correct categorization and localization of pulmonary T1 tumors and potentially affect patient management.

20.
AJR Am J Roentgenol ; 200(3): 592-600, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23436849

RESUMEN

OBJECTIVE: Modern CT systems use surrogates of noise-noise index (NI) and quality reference effective tube current-time product (Q)-to infer the quality of images acquired using tube current modulation. This study aimed to determine the relationship between actual noise and these surrogates for two CT scanners from two different manufacturers. MATERIALS AND METHODS: Two phantoms (adult and 1-year-old child) were imaged on two CT scanners (64 and 128 MDCT) using a clinical range of NI (6-22) and Q (30-300 mA). Each scan was performed twice, and noise was measured in the mediastinum, lung, and abdomen using an image subtraction technique. The effect on noise from changing other imaging parameters, such as beam collimation, pitch, peak kilovoltage, slice thickness, FOV, reconstruction kernel or algorithm, and patient age category (adult or pediatric), was investigated. RESULTS: On the 64-MDCT scanner, noise increased linearly along with NI, with the slope affected by changing the anatomy of interest, peak kilovoltage, reconstruction algorithm, and convolution kernel. The noise-NI relationship was independent of phantom size, slice thickness, pitch, FOV, and beam width. On the 128-MDCT scanner, noise decreased nonlinearly along with increasing Q, slice thickness, and peak tube voltage. The noise-Q relationship also depended on anatomy of interest, phantom size, age selection, and reconstruction algorithm but was independent of pitch, FOV, and detector configuration. CONCLUSION: We established how noise changes with changing image quality indicators across a clinically relevant range of imaging parameters. This work can aid in optimizing protocols by targeting specific noise levels for different types of CT examinations.


Asunto(s)
Artefactos , Interpretación de Imagen Radiográfica Asistida por Computador/instrumentación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Análisis de Falla de Equipo , Humanos , Lactante , Masculino , Fantasmas de Imagen , Intensificación de Imagen Radiográfica/instrumentación , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA