RESUMEN
Although radioactive experiments are necessary in radiopharmaceutical drug discovery and theranostic cancer research, they are expensive, require special facilities, and face certain restrictions. Thus, finding techniques not involving radioactivity is highly beneficial for minimizing these disadvantages in such research. In this regard, methods using inductively coupled plasma-mass spectrometry (ICP-MS) have emerged as viable alternatives to traditional radioactive approaches. Despite its potential, practical applications of ICP-MS in radiopharmaceutical cancer research have only emerged in recent years. This Perspective focuses on the development and implementation of nonradioactive ICP-MS-based assays in radiopharmaceutical research and aims to inspire future research efforts in this area.
RESUMEN
A novel dual nucleophilic substitution reaction of dichloromethane with thiols has been developed, which affords dithioacetals in up to 96% yields. This dual substitution reaction with two different nucleophiles is also successfully developed with α-acyloxy sulfides as the product. In addition, in vitro antifungal activity tests against L. theobromae disclose that these α-acyloxy sulfides exhibit excellent antifungal activity with an inhibition rate up to 100 ± 0%. This reaction provides efficient access to potential bioactive dithioacetals from readily available starting materials.
Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Compuestos de Sulfhidrilo/síntesis química , Estructura Molecular , Relación Estructura-ActividadRESUMEN
An efficient multicomponent reaction of newly designed ß-trifluoromethyl ß-diazo esters, acetonitrile, and carboxylic acids via an interrupted esterification process under copper-catalyzed conditions has been developed, which affords various unsymmetrical ß-trifluoromethyl N,N-diacyl-ß-amino esters in good to excellent yields. The reaction features mild conditions, a wide scope of ß-amino esters and carboxylic acids, and also applicability to large-scale synthesis, thus providing an efficient way for the synthesis of ß-trifluoromethyl ß-diacylamino esters. Furthermore, this reaction represents the first example of a Mumm rearrangement of ß-trifluoromethyl ß-diazo esters.
RESUMEN
A new SN2' reaction type of Morita-Baylis-Hillman (MBH) ester with sulfonyl anion, generated in situ via detrifluoroacetylation as a nucleophile is developed. Experimental results and DFT calculations disclose that the reaction proceeds via C-C bond cleavage to generate a PhSO2CF2 anion, C-S bond cleavage to generate a sulfonyl anion with the release of CF2 carbene, and an SN2' reaction with the MBH ester. The reaction features operational simplicity, wide substrate scope, high yields, and excellent stereoselectivity, which represents a new reaction mode of fluorinated gem-diols and also provides an efficient way to obtain ß,γ-unsaturated sulfones.
RESUMEN
Novel type of Pd(II) complexes have been synthesized under operationally simple and convenient conditions and applied in the dynamic thermodynamic resolution of racemic N,C-unprotected α-amino acids. After rapid hydrolysis, these Pd(II) complexes produced the corresponding α-amino acids in satisfactory yields and enantioselectivities, accompanied by the recyclable proline-derived ligand. In addition, the method can be readily applied for S/R interconversion to obtain unnatural (R)-α-amino acids from readily available (S)-α-amino acids. Furthermore, biological assays showed that Pd(II) complexes (S,S)-3i and (S,S)-3m exhibited significant antibacterial activities similar to vancomycin, which may represent promising lead structures for further development of antibacterial agents.
Asunto(s)
Aminoácidos , Prolina , Prolina/química , Ligandos , Estereoisomerismo , Aminoácidos/química , Antibacterianos/farmacología , TermodinámicaRESUMEN
Over the last 100-120 years, due to the ever-increasing importance of fluorine-containing compounds in modern technology and daily life, the explosive development of the fluorochemical industry led to an enormous increase of emission of fluoride ions into the biosphere. This made it more and more important to understand the biological activities, metabolism, degradation, and possible environmental hazards of such substances. This comprehensive and critical review focuses on the effects of fluoride ions and organofluorine compounds (mainly pharmaceuticals and agrochemicals) on human health and the environment. To give a better overview, various connected topics are also discussed: reasons and trends of the advance of fluorine-containing pharmaceuticals and agrochemicals, metabolism of fluorinated drugs, withdrawn fluorinated drugs, natural sources of organic and inorganic fluorine compounds in the environment (including the biosphere), sources of fluoride intake, and finally biomarkers of fluoride exposure.
Asunto(s)
Contaminantes Ambientales/química , Flúor/química , Contaminación Ambiental , Hidrocarburos Fluorados/químicaRESUMEN
Sclareolide was developed as an efficient C-nucleophilic reagent for an asymmetric Mannich addition reaction with a series of N-tert-butylsulfinyl aldimines. The Mannich reaction was carried out under mild conditions, affording the corresponding aminoalkyl sclareolide derivatives with up to 98% yield and 98:2:0:0 diastereoselectivity. Furthermore, the reaction could be performed on a gram scale without any reduction in yield and diastereoselectivity. Additionally, deprotection of the obtained Mannich addition products to give the target sclareolide derivatives bearing a free N-H group was demonstrated. In addition, target compounds 4-6 were subjected to an antifungal assay in vitro, which showed considerable antifungal activity against forest pathogenic fungi.
Asunto(s)
Antifúngicos , Diterpenos , Antifúngicos/farmacología , HongosRESUMEN
The strategic fluorination of oxidatively vulnerable sites in bioactive compounds is a relatively recent, widely used approach allowing us to modulate the stability, bio-absorption, and overall efficiency of pharmaceutical drugs. On the other hand, natural and tailor-made amino acids are traditionally used as basic scaffolds for the development of bioactive molecules. The main goal of this review article is to emphasize these general trends featured in recently approved pharmaceutical drugs.
Asunto(s)
Antifibrinolíticos , Flúor , Flúor/química , Aminoácidos/química , Halogenación , Preparaciones FarmacéuticasRESUMEN
An operationally simple and convenient resolution method via Cu(II) complexes was reported, efficiently providing valuable enantiopure N,C-unprotected α-amino acids. This protocol features synthetically attractive yields and a stereochemical outcome, using a recyclable Schiff base ligand and inexpensive easily accessible metal copper salts. These novel Cu(II) complexes can be obtained in an enantiopure state by means of column chromatography or recrystallization. Furthermore, all the Cu(II) complexes were evaluated for their antibacterial activities. Among them, complexes (S,2S)-3a, (S,2S)-3g, and (S,2S)-3o showed significant antibacterial activities against Staphylococcus aureus Mu50. Further biological evaluation indicated that they were effective against most of Gram-positive bacteria. It is the first study on the biological activities of transition metal complexes with this type of proline-derived Schiff base ligand.
Asunto(s)
Complejos de Coordinación , Bases de Schiff , Aminoácidos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , Ligandos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Prolina/farmacología , Sales (Química) , Bases de Schiff/química , Bases de Schiff/farmacologíaRESUMEN
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Asunto(s)
Aminoácidos/farmacología , Aprobación de Drogas , Preparaciones Farmacéuticas/química , Aminoácidos/química , Estructura Molecular , Estados Unidos , United States Food and Drug AdministrationRESUMEN
γ-Aminobutyric acid (GABA) represents one of the most prolific structural units widely used in the design of modern pharmaceuticals. For example, ß-substituted GABA derivatives are found in numerous neurological drugs, such as baclofen, phenibut, tolibut, pregabalin, phenylpiracetam, brivaracetam, and rolipram, to mention just a few. In this review, we critically discuss the literature data reported on the preparation of substituted GABA derivatives using the Michael addition reaction as a key synthetic transformation. Special attention is paid to asymmetric methods featuring synthetically useful stereochemical outcomes and operational simplicity.
Asunto(s)
Baclofeno , Ácido gamma-Aminobutírico , Pregabalina , Estereoisomerismo , Ácido gamma-Aminobutírico/químicaRESUMEN
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Asunto(s)
Aminoácidos , Triptófano , Química Farmacéutica , Industria Farmacéutica , PéptidosRESUMEN
The use of chiral Ni (II)-complexes of glycine Schiff bases has recently emerged as a leading methodology for asymmetric synthesis of structurally diverse Tailor-Made Amino Acids™, playing a key role in the design of modern pharmaceuticals. Here, we report first example of enantioselective preparation of (S)-3-methyleneglutamic acid and its N-Fmoc derivative via a new type of Michael addition-elimination reaction between chiral nucleophilic glycine equivalent and enol tosylates. This reaction was found to proceed with excellent yield (91%) and diastereoselectivity (>99/1 de) allowing straightforward asymmetric synthesis of (S)-3-methyleneglutamic acid derivatives and analogues. The observed results bode well for general application of this Ni (II) complex approach for preparation and biological studies of this previously unknown type of Tailor-Made Amino Acids™.
RESUMEN
Dynamic kinetic resolution (DKR) of unprotected amino acids (AAs), via intermediate formation of Ni(II) complexes, is currently a leading methodology for preparation of natural and tailor-made AAs in enantiomerically pure form. In this work, we conduct a comparative case study of synthetic performance of four different ligands in DKR of six AAs representing aryl-, benzyl-, alkyl-, and long alkyl-type derivatives. The results of this study allow for rational selection of ligand/AA type to develop a practical procedure for preparation of target enantiomerically pure AAs.
Asunto(s)
Aminoácidos , Níquel , Cinética , Ligandos , EstereoisomerismoRESUMEN
We wish to draw attention to an important issue concerning scientific practice with regard to enhancing the quality of publications in Molecules (as well as for other journals) [...].
RESUMEN
The purpose of this review is to highlight the necessity of conducting tests to gauge the magnitude of the self-disproportionation of enantiomers (SDE) phenomenon to ensure the veracity of reported enantiomeric excess (ee) values for scalemic samples obtained from enantioselective reactions, natural products isolation, etc. The SDE always occurs to some degree whenever any scalemic sample is subjected to physicochemical processes concomitant with the fractionation of the sample, thus leading to erroneous reporting of the true ee of the sample if due care is not taken to either preclude the effects of the SDE by measurement of the ee prior to the application of physicochemical processes, suppressing the SDE, or evaluating all obtained fractions of the sample. Or even avoiding fractionation altogether if possible. There is a clear necessity to conduct tests to assess the magnitude of the SDE for the processes applied to samples and the updated and improved recommendations described herein cover chromatography and processes involving gas-phase transformations such as evaporation or sublimation.
RESUMEN
Incorporation of fluorine into organic molecules is a well-established strategy in the design of advanced materials, agrochemicals, and pharmaceuticals. Among numerous modern synthetic approaches, functionalization of unsaturated bonds with simultaneous addition of trifluoromethyl group along with other substituents is currently one of the most attractive methods undergoing wide-ranging development. In this review article, we discuss the most significant contributions made in this area during the last decade (2012-2021). The reactions reviewed in this work include chloro-, bromo-, iodo-, fluoro- and cyano-trifluoromethylation of alkenes and alkynes.
RESUMEN
The results of extended comparative investigation of nickel(II) Schiff base complexes (containing various auxiliary chiral moieties) commonly used as a methodological platform for the asymmetric synthesis of tailor-made α-amino acids are provided. The following issues are addressed: 1)â redox activity (determining the possibility for electrochemically induced reactions); 2)â quantitative estimation of the reactivity of deprotonated complexes towards electrophiles; and 3)â quantum-chemical estimation of noncovalent interactions in the metal coordination environment (which shed light on the origin of the stereochemical outcome observed for different stereoinductors). Possible mechanisms that determine the relationship between the stereochemical configuration of a molecule and its electronic structure are discussed. The DFT-calculated HOMO-LUMO energies and localization, as well as relative energies for the (S)- and (R)-alanine derivatives, that determine the stereoinduction efficiency in thermodynamically controlled reactions in nickel(II) coordination are provided. The computational data are supported by experimental results on the monobenzylation of glycine derivatives.
Asunto(s)
Aminoácidos/química , Complejos de Coordinación/química , Bases de Schiff/química , Alanina/química , Glicina/química , Níquel/química , Estereoisomerismo , TermodinámicaRESUMEN
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Asunto(s)
Aminoácidos , Preparaciones Farmacéuticas , Química Farmacéutica , Humanos , Hidrocarburos FluoradosRESUMEN
Amino acids (AAs) are among a handful of paramount classes of compounds innately involved in the origin and evolution of all known life-forms. Along with basic scientific explorations, the major goal of medicinal chemistry research in the area of tailor-made AAs is the development of more selective and potent pharmaceuticals. The growing acceptance of peptides and peptidomimetics as drugs clearly indicates that AA-based molecules become the most successful structural motif in the modern drug design. In fact, among 24 small-molecule drugs approved by FDA in 2019, 13 of them contain a residue of AA or di-amines or amino-alcohols, which are commonly considered to be derived from the parent AAs. In the present review article, we profile 13 new tailor-made AA-derived pharmaceuticals introduced to the market in 2019. Where it is possible, we will discuss the development form drug-candidates, total synthesis, with emphasis on the core-AA, therapeutic area, and the mode of biological activity.