Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(2): 507-513, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38190655

RESUMEN

Understanding the mechanism of chirality transfer from a chiral surface to an achiral molecule is essential for designing molecular systems with tunable chiroptical properties. These aspects are explored herein using l- and d-isomers of alkyl valine amphiphiles, which self-assemble in water as nanofibers possessing a negative surface charge. An achiral chromophore, acridine orange, upon electrostatic binding on these surfaces displays mirror-imaged bisignated circular dichroism and red-emitting circularly polarized luminescence signals with a high dissymmetry factor. Experimental and computational investigations establish that the chiroptical properties emerge from surface-bound asymmetric H-type dimers of acridine orange, further supported by fluorescence lifetime imaging studies. Specifically, atomistic molecular dynamics simulations show that the experimentally observed chiral signatures have their origin in van der Waals interactions between acridine orange dimers and the amphiphile head groups as well as in the extent of solvent exposure of the chromophore.

2.
ACS Nano ; 17(11): 11054-11069, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37220308

RESUMEN

The surface domains of self-assembled amphiphiles are well-organized and can perform many physical, chemical, and biological functions. Here, we present the significance of chiral surface domains of these self-assemblies in transferring chirality to achiral chromophores. These aspects are probed using l- and d-isomers of alkyl alanine amphiphiles which self-assemble in water as nanofibers, possessing a negative surface charge. When bound on these nanofibers, positively charged cyanine dyes (CY524 and CY600), each having two quinoline rings bridged by conjugated double bonds, show contrasting chiroptical features. Interestingly, CY600 displays a bisignated circular dichroic (CD) signal with mirror-image symmetry, while CY524 is CD silent. Molecular dynamics simulations reveal that the model cylindrical micelles (CM) derived from the two isomers exhibit surface chirality and the chromophores are buried as monomers in mirror-imaged pockets on their surfaces. The monomeric nature of template-bound chromophores and their binding reversibility are established by concentration- and temperature-dependent spectroscopies and calorimetry. On the CM, CY524 displays two equally populated conformers with opposite sense, whereas CY600 is present as two pairs of twisted conformers in each of which one is in excess, due to differences in weak dye-amphiphile hydrogen bonding interactions. Infrared and NMR spectroscopies support these findings. Reduction of electronic conjugation caused by the twist establishes the two quinoline rings as independent entities. On-resonance coupling between the transition dipoles of these units generates bisignated CD signals with mirror-image symmetry. The results presented herein provide insight on the little-known structurally induced chirality of achiral chromophores through transfer of chiral surface information.

3.
J Phys Chem B ; 126(14): 2635-2646, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35353512

RESUMEN

The use of indium phosphide (InP) quantum dots (QDs) as biological fluorophores is limited by the low photoluminescence quantum yield (ϕPL) and the lack of effective bioconjugation strategies. The former issue has been addressed by introducing a strain relaxing intermediate shell such as ZnSe, GaP etc. that significantly enhances the ϕPL of InP. Herein, we present an effective strategy for the conjugation of emissive InP/GaP/ZnS QDs with a commonly used globular protein, namely bovine serum albumin (BSA), which generate colloidally stable QD bioconjugates, labeled as InP-BSA and demonstrate its use as energy transfer probes. The conjugate contains one protein per QD, and the circular dichroism spectra of BSA and InP-BSA exhibit similar fractions of α-helix and ß-sheet, reflective of the fact that the secondary structure of the protein is intact on binding. More importantly, the fluorescence polarization studies corroborate the fact that the bound protein can hold a variety of chromophoric acceptors. Upon selectively exciting the InP-BSA component in the presence of bound chromophores, a reduction in the emission intensity of the donor is observed with a concomitant increase in emission of the acceptor. Time-resolved investigations further confirm an efficient nonradiative energy transfer from InP-BSA to the bound acceptors.


Asunto(s)
Puntos Cuánticos , Compuestos de Zinc , Transferencia de Energía , Indio , Fosfinas , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Albúmina Sérica Bovina/química , Sulfuros/química , Compuestos de Zinc/química
4.
J Phys Chem B ; 125(36): 10119-10125, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34473517

RESUMEN

We probed the "dark" state involved in the protein-quantum dot (QD) interaction using a relaxation-based solution nuclear magnetic resonance (NMR) approach. We examined the dynamics and exchange kinetics of the ubiquitin-CdTe model system, which undergoes a fast exchange in the transverse relaxation time scale. We applied the recently developed dark-state exchange saturation transfer (DEST), lifetime line broadening (ΔR2), and exchange-induced chemical shift (δex) solution NMR techniques to obtain a residue-specific binding behavior of the protein on the QD surface. The variation in the estimated 15N-R2bound values clearly shows the dynamic nature of bound Ub. Upon mapping the amino acid residues showing a faster relaxation rate on the electrostatic potential surface of the protein, we have determined that the interaction is preferably electrostatic, and the amino acid residues involved in binding lie on the positively charged surface of the protein. We believe that our experimental approach should provide more in-depth knowledge to engineer new hybrid protein-QD systems in the future.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Telurio
5.
ACS Nano ; 13(4): 4392-4401, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30916934

RESUMEN

Template-assisted strategies are widely used to fabricate nanostructured materials. By taking these strategies a step forward, herein we report the design of two chiral plasmonic nanostructures based on Au nanoparticle (NP) assemblies organized in clockwise and anticlockwise directions, having opposite response to circularly polarized light. The chiral plasmonic nanostructures are obtained by growing Au NPs on chiral templates based on d- and l-forms of alanine functionalized phenyleneethynylenes. Interestingly, Au NP assemblies show mirror symmetrical electronic circular dichroism (ECD) bands at their surface plasmon frequency originating through their asymmetric organization. Upon increasing the temperature, the chiral templates dissociate as evident from the disappearance of their ECD signal. The profound advantage of the thermoresponsive nature of the templates is employed to obtain free-standing chiral plasmonic nanostructures. The tilt angle high-resolution transmission electron microscopic measurements indicate that the NP assemblies, grown on a template based on the d-isomer, organize in clockwise direction ( P-form) and on l-isomer in anticlockwise direction ( M-form). The inherent chirality prevailing on the surface of the template drives the helical growth of the Au NPs in opposite directions. Experimental results are rationalized by a model which accounts for the large polarizability of Au NPs. The large polarizability leads to large oscillating dipole moments whose effects become prominent when interparticle distances are comparable to the particle size.

6.
ACS Nano ; 12(1): 402-415, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29261287

RESUMEN

Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA