Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Trends Biochem Sci ; 43(10): 790-805, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30139647

RESUMEN

Polyhydroxyalkanoates (PHAs) are diverse biopolyesters produced by numerous microorganisms and have attracted much attention as a substitute for petroleum-based polymers. Despite several decades of study, the detailed molecular mechanisms of PHA biosynthesis have remained unknown due to the lack of structural information on the key PHA biosynthetic enzyme PHA synthase. The recently determined crystal structure of PHA synthase, together with the structures of acetyl-coenzyme A (CoA) acetyltransferase and reductase, have changed this situation. Structural and biochemical studies provided important clues for the molecular mechanisms of each enzyme as well as the overall mechanism of PHA biosynthesis from acetyl-CoA. This new information and knowledge is expected to facilitate production of designed novel PHAs and also enhanced production of PHAs.


Asunto(s)
Polihidroxialcanoatos/metabolismo , Acetato CoA Ligasa/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Catálisis , Estructura Molecular , Polihidroxialcanoatos/química , Polimerizacion , Especificidad por Sustrato
2.
Arch Biochem Biophys ; 730: 109391, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36087768

RESUMEN

Cupriavidus necator H16 is a gram-negative chemolithoautotrophic bacterium that has been extensively studied for biosynthesis and biodegradation of polyhydroxyalkanoate (PHA) plastics. To improve our understanding of fatty acid metabolism for PHA production, we determined the crystal structure of multi-functional enoyl-CoA hydratase from Cupriavidus necator H16 (CnFadB). The predicted model of CnFadB created by AlphaFold was used to solve the phase problem during determination of the crystal structure of the protein. The CnFadB structure consists of two distinctive domains, an N-terminal enol-CoA hydratase (ECH) domain and a C-terminal 3-hydroxyacyl-CoA dehydrogenase (HAD) domain, and the substrate- and cofactor-binding modes of these two functional domains were identified. Unlike other known FadB enzymes that exist as dimers complexed with FadA, CnFadB functions as a monomer without forming a complex with CnFadA. Small angle X-ray scattering (SAXS) measurement further proved that CnFadB exists as a monomer in solution. The non-sequential action of FadA and FadB in C. necator appears to affect ß-oxidation and PHA synthesis/degradation.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Cupriavidus necator/metabolismo , Polihidroxialcanoatos/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Enoil-CoA Hidratasa/metabolismo , Ácidos Grasos/metabolismo , Plásticos/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasa/metabolismo , Coenzima A/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563152

RESUMEN

Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.


Asunto(s)
Yarrowia , Ácidos/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Biocombustibles , Furaldehído/farmacología , Lípidos , Yarrowia/metabolismo
4.
Environ Microbiol ; 22(2): 752-765, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31814251

RESUMEN

The bi-functional malonyl-CoA reductase is a key enzyme of the 3-hydroxypropionate bi-cycle for bacterial CO2 fixation, catalysing the reduction of malonyl-CoA to malonate semialdehyde and further reduction to 3-hydroxypropionate. Here, we report the crystal structure and the full-length architecture of malonyl-CoA reductase from Porphyrobacter dokdonensis. The malonyl-CoA reductase monomer of 1230 amino acids consists of four tandemly arranged short-chain dehydrogenases/reductases, with two catalytic and two non-catalytic short-chain dehydrogenases/reductases, and forms a homodimer through paring contact of two malonyl-CoA reductase monomers. The complex structures with its cofactors and substrates revealed that the malonyl-CoA substrate site is formed by the cooperation of two short-chain dehydrogenases/reductases and one novel extra domain, while only one catalytic short-chain dehydrogenase/reductase contributes to the formation of the malonic semialdehyde-binding site. The phylogenetic and structural analyses also suggest that the bacterial bi-functional malonyl-CoA has a structural origin that is completely different from the archaeal mono-functional malonyl-CoA and malonic semialdehyde reductase, and thereby constitute an efficient enzyme.


Asunto(s)
Alphaproteobacteria/enzimología , Malondialdehído/análogos & derivados , Malonil Coenzima A/metabolismo , Oxidorreductasas/metabolismo , Sitios de Unión/fisiología , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Malondialdehído/metabolismo , Filogenia , Unión Proteica/fisiología , Conformación Proteica
5.
Biochem Biophys Res Commun ; 508(1): 250-255, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30477746

RESUMEN

Poly(ethylene terephthalate) (PET) is the most commonly used polyester polymer resin in fabrics and storage materials, and its accumulation in the environment is a global problem. The ability of PET hydrolase from Ideonella sakaiensis 201-F6 (IsPETase) to degrade PET at moderate temperatures has been studied extensively. However, due to its low structural stability and solubility, it is difficult to apply standard laboratory-level IsPETase expression and purification procedures in industry. To overcome this difficulty, the expression of IsPETase can be improved by using a secretion system. This is the first report on the production of an extracellular IsPETase, active against PET film, using Sec-dependent translocation signal peptides from E. coli. In this work, we tested the effects of fusions of the Sec-dependent and SRP-dependent signal peptides from E. coli secretory proteins into IsPETase, and successfully produced the extracellular enzyme using pET22b-SPMalE:IsPETase and pET22b-SPLamB:IsPETase expression systems. We also confirmed that the secreted IsPETase has PET-degradation activity. The work will be used for development of a new E. coli strain capable of degrading and assimilating PET in its culture medium.


Asunto(s)
Burkholderiales/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrolasas/biosíntesis , Tereftalatos Polietilenos/metabolismo , Señales de Clasificación de Proteína
6.
Biochem Biophys Res Commun ; 495(2): 1815-1821, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29233695

RESUMEN

l-lysine is an essential amino acid that is widely used as a food supplement for humans and animals. meso-Diaminopimelic acid decarboxylase (DAPDC) catalyzes the final step in the de novol-lysine biosynthetic pathway by converting meso-diaminopimelic acid (meso-DAP) into l-lysine by decarboxylation reaction. To elucidate its molecular mechanisms, we determined the crystal structure of DAPDC from Corynebacterium glutamicum (CgDAPDC). The PLP cofactor is bound at the center of the barrel domain and forms a Schiff base with the catalytic Lys75 residue. We also determined the CgDAPDC structure in complex with both pyridoxal 5'-phosphate (PLP) and the l-lysine product and revealed that the protein has an optimal substrate binding pocket to accommodate meso-DAP as a substrate. Structural comparison of CgDAPDC with other amino acid decarboxylases with different substrate specificities revealed that the position of the α15 helix in CgDAPDC and the residues located on the helix are crucial for determining the substrate specificities of the amino acid decarboxylases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carboxiliasas/química , Carboxiliasas/metabolismo , Corynebacterium glutamicum/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Carboxiliasas/genética , Dominio Catalítico , Corynebacterium glutamicum/genética , Cristalografía por Rayos X , Lisina/biosíntesis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Fosfato de Piridoxal/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Biochem Biophys Res Commun ; 459(3): 387-92, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25727019

RESUMEN

Glutamate dehydrogenase (GDH) is an enzyme involved in the synthesis of amino acids by converting glutamate to α-ketoglutarate, and vice versa. To investigate the molecular mechanism of GDH, we determined a crystal structure of the Corynebacterium glutamicum-derived GDH (CgGDH) in complex with its NADP cofactor and α-ketoglutarate substrate. CgGDH functions as a hexamer, and each CgGDH monomer comprises 2 separate domains; a Rossmann fold cofactor-binding domain and a substrate-binding domain. The structural comparison between the apo- and cofactor/substrate-binding forms revealed that the CgGDH enzyme undergoes a domain movement during catalysis. In the apo-form, CgGDH exists as an open state, and upon binding of the substrate and cofactor the protein undergoes a conformation change to a closed state. Our structural study also revealed that CgGDH has cofactor specificity for NADP, but not NAD, and this was confirmed by GDH activity measurements. Residues involved in the stabilization of the NADP cofactor and the α-ketoglutarate substrate were identified, and their roles in substrate/cofactor binding were confirmed by site-directed mutagenesis experiments.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/enzimología , Glutamato Deshidrogenasa/química , Glutamato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Corynebacterium glutamicum/genética , Cristalografía por Rayos X , Glutamato Deshidrogenasa/genética , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NADP/metabolismo , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
Biochem Biophys Res Commun ; 444(3): 365-9, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24462871

RESUMEN

ReBktB is a ß-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, such as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of ß-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K(m), V(max), and K(cat) values of 11.58 µM, 1.5 µmol/min, and 102.18 s(-1), respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Cupriavidus necator/enzimología , Polihidroxialcanoatos/biosíntesis , Acetil-CoA C-Aciltransferasa/química , Acetil-CoA C-Aciltransferasa/genética , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Cupriavidus necator/metabolismo , Cinética , Datos de Secuencia Molecular , Mutagénesis , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
Int J Biol Macromol ; 255: 128103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992937

RESUMEN

Corynebacterium glutamicum is an industrial workhorse applied in the production of valuable biochemicals. In the process of bio-based chemical production, improving cofactor recycling and mitigating cofactor imbalance are considered major solutions for enhancing the production yield and efficiency. Although, glyceraldehyde-3-phosphate dehydrogenase (GapDH), a glycolytic enzyme, can be a promising candidate for a sufficient NADPH cofactor supply, however, most microorganisms have only NAD-dependent GapDHs. In this study, we performed functional characterization and structure determination of novel NADPH-producing GapDH from C. glutamicum (CgGapX). Based on the crystal structure of CgGapX in complex with NADP cofactor, the unique structural features of CgGapX for NADP stabilization were elucidated. Also, N-terminal additional region (Auxiliary domain, AD) appears to have an effect on enzyme stabilization. In addition, through structure-guided enzyme engineering, we developed a CgGapX variant that exhibited 4.3-fold higher kcat, and 1.2-fold higher kcat/KM values when compared with wild-type. Furthermore, a bioinformatic analysis of 100 GapX-like enzymes from 97 microorganisms in the KEGG database revealed that the GapX-like enzymes possess a variety of AD, which seem to determine enzyme stability. Our findings are expected to provide valuable information for supplying NADPH cofactor pools in bio-based value-added chemical production.


Asunto(s)
Corynebacterium glutamicum , NADP/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis
10.
Int J Biol Macromol ; 255: 128313, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995783

RESUMEN

Tyrosinase-mediated protein conjugation has recently drawn attention as a site-specific protein modification tool under mild conditions. However, the tyrosinases reported to date act only on extremely exposed tyrosine residues, which limits where the target tyrosine can be located. Herein, we report a tyrosinase from Streptomyces avermitilis (SaTYR), that exhibits a much higher activity against tyrosine residues on the protein surface than other tyrosinases. We determined the crystal structure of SaTYR and revealed that the enzyme has a relatively flat and shallow substrate-binding pocket to accommodate a protein substrate. We demonstrated SaTYR-mediated fluorescence dye tagging and PEGylation of a surface tyrosine residue that was unreacted by other tyrosinases with an approximately 95.2 % conjugation yield in 1 h. We also present a structural rationale that considers the steric hindrance from adjacent residues and surrounding structures along with the extent of solvent exposure of residues, as necessary when determining the optimal positions for introducing target tyrosine residues in SaTYR-mediated protein modification. The study demonstrated that the novel tyrosinase, SaTYR, extends the scope of tyrosinase-mediated protein modification, and we propose that site-specific tyrosine conjugation using SaTYR is a promising strategy for protein bioconjugation in various applications.


Asunto(s)
Monofenol Monooxigenasa , Streptomyces , Monofenol Monooxigenasa/metabolismo , Proteínas/metabolismo , Tirosina/química
11.
Bioresour Technol ; 403: 130871, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782190

RESUMEN

Polyethylene (PE) exhibits high resistance to degradation, contributing to plastic pollution. PE discarded into the environment is photo-oxidized by sunlight and oxygen. In this study, a key enzyme capable of degrading oxidized PE is reported for the first time. Twenty different enzymes from various lipase families were evaluated for hydrolytic activity using substrates mimicking oxidized PE. Among them, Pelosinus fermentans lipase 1 (PFL1) specifically cleaved the ester bonds within the oxidized carbon-carbon backbone. Moreover, PFL1 (6 µM) degraded oxidized PE film, reducing the weight average and number average molecular weights by 44.6 and 11.3 %, respectively, within five days. Finally, structural analysis and molecular docking simulations were performed to elucidate the degradation mechanism of PFL1. The oxidized PE-degrading enzyme reported here will provide the groundwork for advancing PE waste treatment technology and for engineering microbes to repurpose PE waste into valuable chemicals.


Asunto(s)
Biodegradación Ambiental , Lipasa , Oxidación-Reducción , Polietileno , Lipasa/metabolismo , Lipasa/química , Polietileno/química , Simulación del Acoplamiento Molecular , Hidrólisis
12.
J Agric Food Chem ; 71(46): 17852-17859, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37935620

RESUMEN

Since the discovery of l-glutamate-producing Corynebacterium glutamicum, it has evolved to be an industrial workhorse. For biobased chemical production, suppling sufficient amounts of the NADPH cofactor is crucial. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme that converts glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate and produces NADH, is a major prospective solution for the cofactor imbalance issue. In this study, we determined the crystal structure of GAPDH from C. glutamicum ATCC13032 (CgGAPDH). Based on the structural information, we generated six CgGAPDH variants, CgGAPDHL36S, CgGAPDHL36S/T37K, CgGAPDHL36S/T37K/P192S, CgGAPDHL36S/T37K/F100V/P192S, CgGAPDHL36S/T37K/F100L/P192S, and CgGAPDHL36S/T37K/F100I/P192S, that can produce both NADH and NAPDH. The final CgGAPDHL36S/T37K/F100V/P192S variant showed a 212-fold increase in enzyme activity for NADP as well as 200% and 30% increased activity for the G3P substrate under NAD and NADP cofactor conditions, respectively. In addition, crystal structures of CgGAPDH variants in complex with NAD(P) permit the elucidation of differences between wild-type CgGAPDH and variants in relation to cofactor stabilization.


Asunto(s)
Corynebacterium glutamicum , NAD , NADP/metabolismo , NAD/metabolismo , Corynebacterium glutamicum/metabolismo , Estudios Prospectivos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ingeniería de Proteínas
13.
J Microbiol Biotechnol ; 32(2): 170-175, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34866129

RESUMEN

3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.


Asunto(s)
Azospirillum brasilense , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Gliceraldehído/análogos & derivados , Glicerol/metabolismo , Ingeniería Metabólica , Propano/metabolismo , Ingeniería de Proteínas
14.
J Agric Food Chem ; 69(42): 12485-12493, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34657425

RESUMEN

L-Tryptophan is known as an aromatic amino acid and one of the essential amino acids that must be ingested through various additives or food. TrpCF is a bifunctional enzyme that has indole-glycerol-phosphate synthase (IGPS) and phosphoribosylanthranilate isomerase (PRAI) activity. In this report, we identified the crystal structure of TrpCF from Corynebacterium glutamicum (CgTrpCF) and successfully elucidated the active site by attaching rCdRP similar to the substrate and product of the TrpCF reaction. Also, we revealed that CgTrpCF shows a conformational change at the loops upon substrate binding. We analyzed amino acid sequences of the homologues of CgTrpCF, and the residues of the substrate-binding site in TrpCF were highly conserved except for some residues. These less conserved residues were replaced by site-directed mutagenesis experiments. Consequently, we obtained the CgTrpCFP294K (PRAICD/P294K) variant that has enhanced activity.


Asunto(s)
Isomerasas Aldosa-Cetosa , Corynebacterium glutamicum , Isomerasas Aldosa-Cetosa/genética , Corynebacterium glutamicum/genética , Indol-3-Glicerolfosfato Sintasa , Isomerasas
15.
J Hazard Mater ; 416: 126075, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492896

RESUMEN

The development of a superb polyethylene terephthalate (PET) hydrolyzing enzyme requires an accurate understanding of the PET decomposition mechanism. However, studies on PET degrading enzymes, including the PET hydrolase from Ideonella sakaiensis (IsPETase), have not provided sufficient knowledge of the molecular mechanisms for the hardly accessible substrate. Here, we report a novel PET hydrolase from Rhizobacter gummiphilus (RgPETase), which has a hydrolyzing activity similar to IsPETase toward microcrystalline PET but distinct behavior toward low crystallinity PET film. Structural analysis of RgPETase reveals that the enzyme shares the key structural features of IsPETase for high PET hydrolysis activity but has distinguished structures at the surface-exposed regions. RgPETase shows a unique conformation of the wobbling tryptophan containing loop (WW-loop) and change of the electrostatic surface charge on the loop dramatically affects the PET-degrading activity. We further show that effect of the electrostatic surface charge to the activity varies depending on locations. This work provides valuable information underlying the uncovered PET decomposition mechanism.


Asunto(s)
Burkholderiales , Tereftalatos Polietilenos , Hidrolasas
16.
Enzyme Microb Technol ; 141: 109656, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33051015

RESUMEN

Poly(ethylene terephthalate) (PET), a widely used plastic around the world, causes various environmental and health problems. Several groups have been extensively conducting research to solve these problems through enzymatic degradation of PET at high temperatures around 70 °C. Recently, Ideonella sakaiensis, a bacterium that degrades PET at mild temperatures, has been newly identified, and further protein engineering studies on the PET degrading enzyme from the organism (IsPETase) have also been conducted to overcome the low thermal stability of the enzyme. In this study, we performed structural bioinformatics-based protein engineering of IsPETase to optimize the substrate binding site of the enzyme and developed two variants, IsPETaseS242T and IsPETaseN246D, with higher enzymatic activity at both 25 and 37 °C compared with IsPETaseWT. We also developed the IsPETaseS121E/D186H/S242T/N246D variant by integrating the S242 T and N246D mutations into the previously reported IsPETaseS121E/D186H/R208A variant. At the 37 °C incubation, the quadruple variant maintained the PET degradation activity for 20 days, unlike IsPETaseWT that lost its activity within a day. Consequently, this study exhibited 58-fold increase in the activity compared with IsPETaseWT.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiales/enzimología , Tereftalatos Polietilenos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biodegradación Ambiental , Burkholderiales/genética , Biología Computacional , Estabilidad de Enzimas , Mutación , Tereftalatos Polietilenos/química , Ingeniería de Proteínas , Temperatura
17.
PLoS One ; 14(2): e0212807, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30794680

RESUMEN

Metallosphaera sedula is a thermoacidophilic archaeon and has an incomplete TCA/glyoxylate cycle that is used for production of biosynthetic precursors of essential metabolites. Citrate synthase from M. sedula (MsCS) is an enzyme involved in the first step of the incomplete TCA/glyoxylate cycle by converting oxaloacetate and acetyl-CoA into citrate and coenzyme A. To elucidate the inhibition properties of MsCS, we determined its crystal structure at 1.7 Å resolution. Like other Type-I CS, MsCS functions as a dimer and each monomer consists of two distinct domains, a large domain and a small domain. The oxaloacetate binding site locates at the cleft between the two domains, and the active site was more closed upon binding of the oxaloacetate substrate than binding of the citrate product. Interestingly, the inhibition kinetic analysis showed that, unlike other Type-I CSs, MsCS is non-competitively inhibited by NADH. Finally, amino acids and structural comparison of MsCS with other Type-II CSs, which were reported to be non-competitively inhibited by NADH, revealed that MsCS has quite unique NADH binding mode for non-competitive inhibition.


Asunto(s)
Proteínas Arqueales , Citrato (si)-Sintasa , Inhibidores Enzimáticos/química , Multimerización de Proteína , Sulfolobaceae/enzimología , Proteínas Arqueales/antagonistas & inhibidores , Proteínas Arqueales/química , Sitios de Unión , Citrato (si)-Sintasa/antagonistas & inhibidores , Citrato (si)-Sintasa/química , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
18.
Sci Rep ; 8(1): 17442, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487522

RESUMEN

Lignocellulosic biomass, of which D-xylose accounts for approximately 35% of the total sugar, has attracted attention as a future energy source for biofuel. To elucidate molecular mechanism of D-xylose utilization, we determined the crystal structure of D-xylose reductase from Schefferzomyces stipitis (SsXR) at a 1.95 Å resolution. We also determined the SsXR structure in complex with the NADPH cofactor and revealed that the protein undergoes an open/closed conformation change upon NADPH binding. The substrate binding pocket of SsXR is somewhat hydrophobic, which seems to result in low binding affinity to the substrate. Phylogenetic tree analysis showed that AKR enzymes annotated with bacterial/archaeal XRs belonged to uncharacterized AKR families and might have no XR function, and yeast/fungi derived enzymes, which belong to the same group with SsXR, can be candidates for XR to increase xylose consumption.


Asunto(s)
Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Saccharomycetales/metabolismo , Xilosa/química , Xilosa/metabolismo , Aldehído Reductasa/genética , Secuencia de Aminoácidos , Sitios de Unión , Redes y Vías Metabólicas , Modelos Moleculares , Conformación Molecular , Filogenia , Unión Proteica , Saccharomycetales/clasificación , Saccharomycetales/genética
19.
Nat Commun ; 9(1): 382, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374183

RESUMEN

Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.


Asunto(s)
Proteínas Bacterianas/química , Burkholderiales/enzimología , Contaminantes Ambientales/química , Hidrolasas/química , Tereftalatos Polietilenos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Burkholderiales/química , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicol de Etileno/química , Glicol de Etileno/metabolismo , Expresión Génica , Hidrolasas/genética , Hidrolasas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Tereftalatos Polietilenos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
20.
Sci Rep ; 7: 46005, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393833

RESUMEN

3-Hydroxypropionic acid (3-HP) is an important platform chemical to be converted to acrylic acid and acrylamide. Aldehyde dehydrogenase (ALDH), an enzyme that catalyzes the reaction of 3-hydroxypropionaldehyde (3-HPA) to 3-HP, determines 3-HP production rate during the conversion of glycerol to 3-HP. To elucidate molecular mechanism of 3-HP production, we determined the first crystal structure of a 3-HP producing ALDH, α-ketoglutarate-semialdehyde dehydrogenase from Azospirillum basilensis (AbKGSADH), in its apo-form and in complex with NAD+. Although showing an overall structure similar to other ALDHs, the AbKGSADH enzyme had an optimal substrate binding site for accepting 3-HPA as a substrate. Molecular docking simulation of 3-HPA into the AbKGSADH structure revealed that the residues Asn159, Gln160 and Arg163 stabilize the aldehyde- and the hydroxyl-groups of 3-HPA through hydrogen bonds, and several hydrophobic residues, such as Phe156, Val286, Ile288, and Phe450, provide the optimal size and shape for 3-HPA binding. We also compared AbKGSADH with other reported 3-HP producing ALDHs for the crucial amino acid residues for enzyme catalysis and substrate binding, which provides structural implications on how these enzymes utilize 3-HPA as a substrate.


Asunto(s)
Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/metabolismo , Azospirillum brasilense/enzimología , Ácido Láctico/análogos & derivados , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Ácido Láctico/biosíntesis , Ácido Láctico/química , Simulación del Acoplamiento Molecular , NAD/metabolismo , NADP/metabolismo , Electricidad Estática , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA