Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 44(6): 1382-1392, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34528713

RESUMEN

Cystathionine ß-synthase (CBS) deficiency is a recessive inborn error of sulfur metabolism characterized by elevated blood levels of total homocysteine (tHcy). Patients diagnosed with CBS deficiency are currently treated by a combination of vitamin supplementation and restriction of foods containing the homocysteine precursor methionine, but the effectiveness of this therapy is limited due to poor compliance. A mouse model for CBS deficiency (Tg-I278T Cbs-/- ) was used to evaluate a potential gene therapy approach to treat CBS deficiency utilizing an AAVrh.10-based vector containing the human CBS cDNA downstream of the constitutive, strong CAG promoter (AAVrh.10hCBS). Mice were administered a single dose of virus and followed for up to 1 year. The data demonstrated a dose-dependent increase in liver CBS activity and a dose-dependent decrease in serum tHcy. Liver CBS enzyme activity at 1 year was similar to Cbs+/- control mice. Mice given the highest dose (5.6 × 1011 genomes/mouse) had mean serum tHcy decrease of 97% 1 week after injection and an 81% reduction 1 year after injection. Treated mice had either full- or substantial correction of alopecia, bone loss, and fat mass phenotypes associated with Cbs deficiency in mice. Our findings show that AAVrh.10-based gene therapy is highly effective in treating CBS deficiency in mice and supports additional pre-clinical testing for eventual use human trials.


Asunto(s)
Cistationina betasintasa/genética , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Homocistinuria/genética , Homocistinuria/terapia , Animales , Cistationina betasintasa/sangre , Cistationina betasintasa/deficiencia , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Homocistinuria/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Fenotipo
2.
Allergy ; 74(6): 1081-1089, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30059156

RESUMEN

BACKGROUND: Hereditary angioedema (HAE) is a life-threatening, autosomal dominant disorder characterized by unpredictable, episodic swelling of the face, upper airway, oropharynx, extremities, genitalia, and gastrointestinal tract. Almost all cases of HAE are caused by mutations in the SERPING1 gene resulting in a deficiency in functional plasma C1 esterase inhibitor (C1EI), a serine protease inhibitor that normally inhibits proteases in the contact, complement, and fibrinolytic systems. Current treatment of HAE includes long-term prophylaxis with attenuated androgens or human plasma-derived C1EI and management of acute attacks with human plasma-derived or recombinant C1EI, bradykinin, and kallikrein inhibitors, each of which requires repeated administration. As an approach to effectively treat HAE with a single treatment, we hypothesized that a one-time intravenous administration of an adeno-associated virus (AAV) gene transfer vector expressing the genetic sequence of the normal human C1 esterase inhibitor (AAVrh.10hC1EI) would provide sustained circulating C1EI levels sufficient to prevent angioedema episodes. METHODS: To study the efficacy of AAVrh.10hC1EI, we used CRISPR/Cas9 technology to create a heterozygote C1EI-deficient mouse model (S63±) that shares characteristics associated with HAE in humans including decreased plasma C1EI and C4 levels. Phenotypically, these mice have increased vascular permeability of skin and internal organs. RESULTS: Systemic administration of AAVrh.10hC1EI to the S63± mice resulted in sustained human C1EI activity levels above the predicted therapeutic levels and correction of the vascular leak in skin and internal organs. CONCLUSION: A single treatment with AAVrh.10hC1EI has the potential to provide long-term protection from angioedema attacks in affected individuals.


Asunto(s)
Angioedemas Hereditarios/terapia , Proteína Inhibidora del Complemento C1/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Animales , Sistemas CRISPR-Cas , Permeabilidad Capilar/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Transgenes
3.
J Neurosci ; 36(49): 12425-12435, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927959

RESUMEN

Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. SIGNIFICANCE STATEMENT: We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using AAV vectors to deliver antibodies like PHF1 directly to brain may constitute a novel approach to treating various neurodegenerative disorders, such as FTD and Alzheimer's disease.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunización Pasiva/métodos , Tauopatías/inmunología , Tauopatías/prevención & control , Factores de Transcripción/inmunología , Proteínas tau/genética , Animales , Anticuerpos Monoclonales/administración & dosificación , Proteínas de Unión al ADN , Dependovirus/inmunología , Femenino , Hipocampo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microinyecciones , Mutación/genética , Ovillos Neurofibrilares/patología , Proteínas del Grupo Polycomb , Distribución Tisular
4.
J Allergy Clin Immunol ; 138(6): 1652-1662.e7, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27372563

RESUMEN

BACKGROUND: Peanuts are the most common food to provoke fatal or near-fatal anaphylactic reactions. Treatment with an anti-hIgE mAb is efficacious but requires frequent parenteral administration. OBJECTIVE: Based on the knowledge that peanut allergy is mediated by peanut-specific IgE, we hypothesized that a single administration of an adeno-associated virus (AAV) gene transfer vector encoding for anti-hIgE would protect against repeated peanut exposure in the host with peanut allergy. METHODS: We developed a novel humanized murine model of peanut allergy that recapitulates the human anaphylactic response to peanuts in NOD-scid IL2Rgammanull mice transferred with blood mononuclear cells from donors with peanut allergy and then sensitized with peanut extract. As therapy, we constructed an adeno-associated rh.10 serotype vector coding for a full-length, high-affinity, anti-hIgE antibody derived from the Fab fragment of the anti-hIgE mAb omalizumab (AAVrh.10anti-hIgE). In the reconstituted mice peanut-specific IgE was induced by peanut sensitization and hypersensitivity, and reactions were provoked by feeding peanuts to mice with symptoms similar to those of human subjects with peanut allergy. RESULTS: A single administration of AAVrh.10anti-hIgE vector expressed persistent levels of anti-hIgE. The anti-hIgE vector, administered either before sensitization or after peanut sensitization and manifestation of the peanut-induced phenotype, blocked IgE-mediated alterations in peanut-induced histamine release, anaphylaxis scores, locomotor activity, and free IgE levels and protected animals from death caused by anaphylaxis. CONCLUSION: If this degree of persistent efficacy translates to human subjects, AAVrh.10anti-hIgE could be an effective 1-time preventative therapy for peanut allergy and possibly other severe, IgE-mediated allergies.


Asunto(s)
Alérgenos/inmunología , Anafilaxia/inmunología , Arachis/inmunología , Terapia Genética , Hipersensibilidad al Cacahuete/inmunología , Extractos Vegetales/inmunología , Células Th2/inmunología , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Liberación de Histamina/efectos de los fármacos , Humanos , Inmunoglobulina E/sangre , Masculino , Ratones , Ratones Endogámicos NOD , Extractos Vegetales/uso terapéutico
5.
Hum Mol Genet ; 23(8): 2005-22, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24271013

RESUMEN

Neuronal ceroid lipofuscinosis (NCL) comprises ∼13 genetically distinct lysosomal disorders primarily affecting the central nervous system. Here we report successful reprograming of patient fibroblasts into induced pluripotent stem cells (iPSCs) for the two most common NCL subtypes: classic late-infantile NCL, caused by TPP1(CLN2) mutation, and juvenile NCL, caused by CLN3 mutation. CLN2/TPP1- and CLN3-iPSCs displayed overlapping but distinct biochemical and morphological abnormalities within the endosomal-lysosomal system. In neuronal derivatives, further abnormalities were observed in mitochondria, Golgi and endoplasmic reticulum. While lysosomal storage was undetectable in iPSCs, progressive disease subtype-specific storage material was evident upon neural differentiation and was rescued by reintroducing the non-mutated NCL proteins. In proof-of-concept studies, we further documented differential effects of potential small molecule TPP1 activity inducers. Fenofibrate and gemfibrozil, previously reported to induce TPP1 activity in control cells, failed to increase TPP1 activity in patient iPSC-derived neural progenitor cells. Conversely, nonsense suppression by PTC124 resulted in both an increase of TPP1 activity and attenuation of neuropathology in patient iPSC-derived neural progenitor cells. This study therefore documents the high value of this powerful new set of tools for improved drug screening and for investigating early mechanisms driving NCL pathogenesis.


Asunto(s)
Aminopeptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Glicoproteínas de Membrana/genética , Modelos Neurológicos , Chaperonas Moleculares/genética , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/genética , Serina Proteasas/genética , Aminopeptidasas/metabolismo , Western Blotting , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Electrofisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Fenofibrato/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Gemfibrozilo/farmacología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Técnicas para Inmunoenzimas , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Serina Proteasas/metabolismo , Tripeptidil Peptidasa 1
6.
J Neurosci Res ; 94(11): 1169-79, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638601

RESUMEN

Leukodystrophies (LDs) are rare, often devastating genetic disorders with neurologic symptoms. There are currently no disease-specific therapeutic approaches for these diseases. In this review we use metachromatic leukodystrophy as an example to outline in the brief the therapeutic approaches to MLD that have been tested in animal models and in clinical trials, such as enzyme-replacement therapy, bone marrow/umbilical cord blood transplants, ex vivo transplantation of genetically modified hematopoietic stem cells, and gene therapy. These studies suggest that to be successful the ideal therapy for MLD must provide persistent and high level expression of the deficient gene, arylsulfatase A in the CNS. Gene therapy using adeno-associated viruses is therefore the ideal choice for clinical development as it provides the best balance of potential for efficacy with reduced safety risk. Here we have summarized the published preclinical data from our group and from others that support the use of a gene therapy with AAVrh.10 serotype for clinical development as a treatment for MLD, and as an example of the potential of gene therapy for LDs especially for Krabbe disease, which is the focus of this special issue. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Animales , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Modelos Animales de Enfermedad , Humanos , Leucodistrofia Metacromática/genética
7.
Sci Rep ; 14(1): 8391, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600238

RESUMEN

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.


Asunto(s)
Frataxina , Ataxia de Friedreich , Humanos , Animales , Ratones , Corazón , Procesamiento Proteico-Postraduccional , Hígado/metabolismo , Terapia Genética , Proteínas de Unión a Hierro/metabolismo , Ataxia de Friedreich/terapia , Ataxia de Friedreich/tratamiento farmacológico
8.
Hum Gene Ther ; 34(15-16): 697-704, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37171121

RESUMEN

Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.


Asunto(s)
Herpesvirus Humano 1 , Ratones , Animales , Humanos , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Vectores Genéticos/genética , ADN
9.
Hum Gene Ther ; 34(3-4): 139-149, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606685

RESUMEN

α1-antitrypsin (AAT) deficiency is a common autosomal recessive hereditary disorder, with a high risk for the development of early-onset panacinar emphysema. AAT, produced primarily in the liver, functions to protect the lung from neutrophil protease; with AAT deficiency, unimpeded neutrophil proteases destroy the lung parenchyma. AAT is susceptible to oxidative damage resulting in an inability to inhibit its target proteases, neutrophil elastase, and cathepsin G. The major sites of oxidative modification on the AAT molecule are methionine residues 351 and 358. We have previously demonstrated that an engineered variant of AAT that resists oxidation by modifying both protein surface methionines (M351V and M358L) provides antiprotease protection, despite oxidative stress. In mice, intravenous delivery of the modified AAT(AVL) variant by AAV serotype 8, AAV8hAAT(AVL), primarily to the liver resulted in long-term expression of an AAT that resists oxidative inactivation. In this study, we evaluated the safety of intravenous administration of AAV8hAAT(AVL) in a dose-escalating, blinded, placebo-controlled toxicology study in wild-type mice. The study assessed organ histology and clinical pathology findings of mice, intravenously administered AAV8hAAT(AVL) at three doses (5.0 × 1011, 5.0 × 1012, and 5.0 × 1013 genome copies [gc]/kg), compared to control mice injected intravenously with phosphate-buffered saline. As previously demonstrated, administration of AAV8hAAT(AVL) resulted in dose-dependent expression of high, potentially therapeutic, levels of serum human AAT protein that persist for at least 6 months. Antibodies against the AAV8 capsid were elicited as expected, but there was no antibody detected against the AAT(AVL) protein generated by the AAV8hAAT(AVL) vector. There was no morbidity or mortality observed in the study. The data demonstrate that intravenous administration of AAV8hAAT(AVL) is safe with no significant adverse effect attributed to AAV8hAAT(AVL) vector at any dose. This study demonstrates that AAV8hAAT(AVL) has a safety profile consistent with the requirements for proceeding to a clinical study.


Asunto(s)
Enfisema Pulmonar , Deficiencia de alfa 1-Antitripsina , Humanos , Ratones , Animales , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Pulmón/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/genética , Anticuerpos , Administración Intravenosa
10.
Res Sq ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38234818

RESUMEN

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results demonstrate that AAVrh.10hFXN may induce expression of therapeutic levels of mature hFXN in mice.

11.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37624734

RESUMEN

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Asunto(s)
Dependovirus , Enfermedades del Sistema Nervioso , Animales , Dependovirus/genética , Radioisótopos de Yodo , Cápside , Distribución Tisular , Transducción Genética , Terapia Genética/métodos , Tomografía de Emisión de Positrones , Vectores Genéticos/genética , Técnicas de Transferencia de Gen
12.
Hum Gene Ther ; 34(17-18): 905-916, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37624739

RESUMEN

CLN2 disease is a fatal, childhood autosomal recessive disorder caused by mutations in ceroid lipofuscinosis type 2 (CLN2) gene, encoding tripeptidyl peptidase 1 (TPP-1). Loss of TPP-1 activity leads to accumulation of storage material in lysosomes and resultant neuronal cell death with neurodegeneration. Genotype/phenotype comparisons suggest that the phenotype should be ameliorated with increase of TPP-1 levels to 5-10% of normal with wide central nervous system (CNS) distribution. Our previous clinical study showed that intraparenchymal (IPC) administration of AAVrh.10hCLN2, an adeno-associated vector serotype rh.10 encoding human CLN2, slowed, but did not stop disease progression, suggesting that this may be insufficient to distribute the therapy throughout the CNS (Sondhi 2020). In this study, we assessed whether the less invasive intracisternal delivery route would be safe and provide a wider distribution of TPP-1. A study was conducted in nonhuman primates (NHPs) with intracisternal delivery to cerebrospinal fluid (CSF) of AAVrh.10hCLN2 (5 × 1013 genome copies) or phosphate buffered saline (PBS). No abnormal behavior was noted. CNS magnetic resonance imaging and clinical chemistry data were all unremarkable. Histopathology of major organs had no abnormal finding attributable to the intervention or the vector, except that in one out of two animals treated with AAVrh.10hCLN2, dorsal root ganglia showed mild-to-moderate mononuclear cell infiltrates and neuronal degeneration. In contrast to our previous NHP study (Sondhi 2012) with IPC administration where TPP-1 activity was >2 × above controls in 30% of treated brains, in the two intracisternal treated NHPs, the TPP-1 activity was >2 × above controls in 50% and 41% of treated brains, and 52% and 84% of brain had >1,000 vector genomes/µg DNA, compared to 0% in the two PBS NHP. CSF TPP1 levels in treated animals were 43-62% of normal human levels. Collectively, these data indicate that AAVrh.10hCLN2 delivered by intracisternal route is safe and widely distributes TPP-1 in brain and CSF at levels that are potentially therapeutic. Clinical Trial Registration: NCT02893826, NCT04669535, NCT04273269, NCT03580083, NCT04408625, NCT04127578, and NCT04792944.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Animales , Niño , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Distribución Tisular , Sistema Nervioso Central , Encéfalo/diagnóstico por imagen , Primates
13.
Hum Gene Ther ; 34(13-14): 605-615, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166361

RESUMEN

Friedreich's ataxia (FA) is a life-threatening autosomal recessive disorder characterized by neurological and cardiac dysfunction. Arrhythmias and heart failure are the main cause of premature death. From prior studies in murine models of FA, adeno-associated virus encoding the normal human frataxin gene (AAVrh.10hFXN) effectively treated the cardiac manifestations of the disease. However, the therapeutic dose window is limited by high level of human frataxin (hFXN) gene expression associated with toxicity. As a therapeutic goal, since FA heterozygotes have no clinical manifestations of FA, we estimated the level of frataxin (FXN) necessary to convert the heart of a homozygote to that of a heterozygote. In noncardiac cells, FA heterozygotes have 30-80% of normal FXN levels (17.7-47.2 ng/mg, average 32.5 ng/mg) and FA homozygotes 2-30% normal levels (1.2-17.7 ng/mg, average 9.4 ng/mg). Therefore, an AAV vector would need to augment endogenous in an FA homozygote by >8.3 ng/mg. To determine the required dose of AAVrh.10hFXN, we administered 1.8 × 1011, 5.7 × 1011, or 1.8 × 1012 gc/kg of AAVrh.10hFXN intravenously (IV) to muscle creatine kinase (mck)-Cre conditional knockout Fxn mice, a cardiac and skeletal FXN knockout model. The minimally effective dose was 5.7 × 1011 gc/kg, resulting in cardiac hFXN levels of 6.1 ± 4.2 ng/mg and a mild (p < 0.01 compared with phosphate-buffered saline controls) improvement in mortality. A dose of 1.8 × 1012 gc/kg resulted in cardiac hFXN levels of 33.7 ± 6.4 ng/mg, a significant improvement in ejection fraction and fractional shortening (p < 0.05, both comparisons) and a 21.5% improvement in mortality (p < 0.001). To determine if the significantly effective dose of 1.8 × 1012 gc/kg could achieve human FA heterozygote levels in a large animal, this dose was administered IV to nonhuman primates. After 12 weeks, the vector-expressed FXN in the heart was 17.8 ± 4.9 ng/mg, comparable to the target human levels. These data identify both minimally and significantly effective therapeutic doses that are clinically relevant for the treatment of the cardiac manifestations of FA.


Asunto(s)
Ataxia de Friedreich , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Corazón , Proteínas de Unión a Hierro/genética , Ratones Noqueados
14.
Transl Vis Sci Technol ; 10(8): 23, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34313725

RESUMEN

Purpose: CLN2-associated disease is a hereditary, fatal lysosomal storage disorder characterized by progressive brain and retinal deterioration. Here, we characterize the inner and outer retinal degeneration using automated segmentation software in optical coherence tomography scans, providing an objective, quantifiable metric for monitoring subtle changes previously identified with a validated disease classification scale (the Weill Cornell Batten Scale). Methods: This study is a retrospective, single-center cohort review of images from examinations under anesthesia in treatment-naïve patients with CLN2-associated disease. Automated segmentation software was used to delineate retinal nerve fiber, ganglion cell layer (GCL), and outer nuclear layer (ONL) thickness measurements in the fovea, parafovea, and perifovea based on age groups (months): 30 to 38, 39 to 45, 46 to 52, 53 to 59, 60 to 66, and 67 or older. Results: Twenty-seven eyes from 14 patients were included, with 8 serial images yielding 36 interpretable optical coherence tomography scans. There was a significant difference in parafoveal ONL thickness between 39 to 45 and 46 to 52 months of age (P = 0.032) not seen in other regions or retinal layers. Perifoveal ONL demonstrated a difference in thickness between the 60 to 66 and greater than 67 months age cohorts (P = 0.047). There was strong symmetry between eyes, and high segmentation repeatability. Conclusions: Parafoveal ONL thickness represents a sensitive, early age indicator of CLN2-associated degeneration. Outer retinal degeneration is apparent at younger ages than inner retinal changes though in treatment-naïve patients all retinal layers showed significant differences between 60 to 66 and more than 67 months of age. Translational Relevance: This study establishes sensitive, quantitative biomarkers for assessing retinal degeneration in a large cohort natural history study in anticipation of future clinical trials.


Asunto(s)
Degeneración Macular , Retina , Preescolar , Humanos , Retina/diagnóstico por imagen , Estudios Retrospectivos , Programas Informáticos , Tomografía de Coherencia Óptica , Tripeptidil Peptidasa 1
15.
Hum Gene Ther ; 32(11-12): 563-580, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33380277

RESUMEN

Metachromatic leukodystrophy, a fatal pediatric neurodegenerative lysosomal storage disease caused by mutations in the arylsulfatase A (ARSA) gene, is characterized by intracellular accumulation of sulfatides in the lysosomes of cells of the central nervous system (CNS). In previous studies, we have demonstrated efficacy of AAVrh.10hARSA, an adeno-associated virus (AAV) serotype rh.10 vector coding for the human ARSA gene to the CNS of a mouse model of the disease, and that catheter-based intraparenchymal administration of AAVrh.10hARSA to the CNS of nonhuman primates (NHPs) white matter results in widespread expression of ARSA. As a formal dose-escalating safety/toxicology study, we assessed the safety of intraparenchymal delivery of AAVrh.10hARSA vector to 12 sites in the white matter of the CNS of NHPs at 2.85 × 1010 (total low dose, 2.4 × 109 genome copies [gc]/site) and 1.5 × 1012 (total high dose, 1.3 × 1011 gc/site) gc, compared to AAVrh.10Null (1.5 × 1012 gc total, 1.3 × 1011 gc/site) as a vector control, and phosphate buffered saline for a sham surgical control. No significant adverse effects were observed in animals treated with low dose AAVrh.10hARSA. However, animals treated with the high dose AAVrh.10ARSA and the high dose Null vector had highly localized CNS abnormalities on magnetic resonance imaging scans at the sites of catheter infusions, and histopathology demonstrated that these sites were associated with infiltrates of T cells, B cells, microglial cells, and/or macrophages. Although these findings had no clinical consequences, these safety data contribute to understanding the dose limits for CNS white matter direct intraparenchymal administration of AAVrh.10 vectors for treatment of CNS disorders.


Asunto(s)
Leucodistrofia Metacromática , Animales , Sistema Nervioso Central , Cerebrósido Sulfatasa/genética , Niño , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Ratones
16.
PLoS One ; 15(11): e0239780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253224

RESUMEN

The cocaine vaccine dAd5GNE is comprised of a disrupted serotype 5 adenovirus gene therapy vector covalently conjugated to the cocaine analog GNE. The vaccine evokes a high titer of circulating anti-cocaine antibodies that prevent cocaine from reaching its cognate receptors in the central nervous system. Prior studies have demonstrated the efficacy of dAd5GNE in models of occasional, moderate cocaine use. However, previous studies have not sufficiently evaluated the efficacy of dAd5GNE in models of the repetitive and high-dose "binge" use patterns common in human addicts. In the present study, we evaluated the capacity of dAd5GNE vaccination to protect against "binge" cocaine use and circumstances where vaccinated addicts attempt to override the vaccine. We modeled repetitive daily cocaine use in vaccinated Balb/c mice and African green monkeys, and evaluated high-dose "binge" scenarios in Balb/c mice. In each model of daily use the dAd5GNE vaccine prevented cocaine from reaching the central nervous system. In the high-dose "binge" model, vaccination decreased cocaine-induced hyperactivity and reduced the number of cocaine-induced seizures. Based on this data and our prior data in rodents and nonhuman primates, we have initiated a clinical trial evaluating the dAd5GNE anti-cocaine vaccine as a potential therapy for cocaine addicts who wish to stop cocaine use. If dAd5GNE vaccination is safe and produces high anti-cocaine antibody titers in the clinic, we hypothesize that the vaccine will restrict the access of cocaine to the central nervous system and inhibit cocaine-induced "highs" even in the context of moderate daily and high-dose "binge" use that might otherwise cause a drug-induced overdose.


Asunto(s)
Trastornos Relacionados con Cocaína/prevención & control , Cocaína/análogos & derivados , Cocaína/inmunología , Adenoviridae/genética , Animales , Anticuerpos/sangre , Anticuerpos/inmunología , Chlorocebus aethiops , Cocaína/administración & dosificación , Cocaína/efectos adversos , Cocaína/uso terapéutico , Femenino , Ratones , Ratones Endogámicos BALB C , Receptores de Droga/metabolismo , Vacunación , Vacunas/uso terapéutico
17.
Ophthalmol Retina ; 4(7): 728-736, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32146219

RESUMEN

PURPOSE: Mutations in the CLN2 gene lead to a neurodegenerative and blinding lysosomal storage disorder: late infantile neuronal ceroid lipofucinosis, also known as "CLN2 disease." The purpose of the current study was to characterize the evolution of CLN2-associated retinal manifestations using the Weill Cornell Batten Scale (WCBS) and the age association of the retinal degeneration using central subfield thickness (CST) measurements and then correlate these findings with fundus photography and OCT to determine a critical period for retinal intervention. DESIGN: Retrospective, single-center cohort. PARTICIPANTS: Eighty-four eyes of 42 treatment-naïve patients with CLN2 disease. METHODS: Clinical records, fundus photographs, and OCT imaging for patients with CLN2 disease collected during examinations under anesthesia were reviewed. Imaging was categorized per WCBS criteria by 3 masked graders. MAIN OUTCOME MEASURES: CLN2-associated retinopathy assessed using WCBS scores, fundus photographs, and OCT imaging, correlated with patient age. RESULTS: Eighty-four eyes of 42 patients had baseline fundus photographs, with baseline OCT in 31 eyes of 16 patients. Fundus photographs were obtained serially for 26 eyes of 13 patients, and serial OCT scans were obtained in 10 eyes of 5 patients. At baseline, bilateral WCBS scores were highly correlated for OCT and fundus photographs (r = 0.96 and 0.82, respectively). Central subfield thickness was negatively correlated with left and right eye WCBS OCT scores (r = -0.92 and -0.83, respectively; P < 0.001) and fundus photograph scores (r = -0.80 and -0.83, respectively; P < 0.001). OCT thickness was symmetrical between each eye. Baseline OCT data with age fit using a sigmoid function demonstrated a period of accelerated loss between 48 and 72 months of age. CONCLUSIONS: Retinal degeneration associated with CLN2 disease manifests as a progressive, symmetrical decline, which appears to accelerate during a critical period at 48 to 72 months of age, suggesting intervention with retina-specific CLN2 gene therapy should occur ideally before or as early as possible within this critical period. The WCBS is a valuable tool and is highly correlated with the extent of retinal degeneration observed in OCT or fundus photographs; by using the fellow eye as a control, this grading scale can be used to monitor the effect of CLN2 gene therapy in future trials.


Asunto(s)
Aminopeptidasas/genética , ADN/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Degeneración Macular/etiología , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Retina/patología , Serina Proteasas/genética , Agudeza Visual , Aminopeptidasas/metabolismo , Preescolar , Análisis Mutacional de ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Angiografía con Fluoresceína , Fondo de Ojo , Humanos , Lactante , Degeneración Macular/diagnóstico , Lipofuscinosis Ceroideas Neuronales/complicaciones , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Estudios Retrospectivos , Serina Proteasas/metabolismo , Tomografía de Coherencia Óptica/métodos , Tripeptidil Peptidasa 1
18.
Hum Gene Ther ; 31(15-16): 819-827, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32646255

RESUMEN

Friedreich's ataxia (FA), an autosomal recessive disorder caused by a deficiency in the expression of frataxin (FXN), is characterized by progressive ataxia and hypertrophic cardiomyopathy. Although cardiac dysfunction is the most common cause of mortality in FA, the cardiac disease remains subclinical for most of the clinical course because the neurologic disease limits muscle oxygen demands. Previous FXN knockout mouse models exhibit fatal cardiomyopathy similar to human FA, but in contrast to the human condition, untreated mice become moribund by 2 months of age, unlike humans where the cardiac disease often does not manifest until the third decade. The study was designed to create a mouse model for early FA disease relevant to the time for which a gene therapy would likely be most effective. To generate a cardiac-specific mouse model of FA cardiomyopathy similar to the human disease, we used a cardiac promoter (αMyhc) driving CRE recombinase cardiac-specific excision of FXN exon 4 to generate a mild, cardiac-specific FA model that is normal at rest, but exhibits the cardiac phenotype with stress. The hearts of αMyhc mice had decreased levels of FXN and activity of the mitochondrial complex II/complex IV respiratory chain. At rest, αMyhc mice exhibited normal cardiac function as assessed by echocardiographic assessment of ejection fraction and fractional shortening, but when the heart was stressed chemically with dobutamine, αMyhc mice compared with littermate control mice had a 62% reduction in the stress ejection fraction (p < 2 × 10-4) and 71% reduction in stress-related fractional shortening (p < 10-5). When assessing functional cardiac performance using running on an inclined treadmill, αMyhc mice stayed above the midline threefold less than littermate controls (p < 0.02). A one-time intravenous administration of 1011 genome copies of AAVrh.10hFXN, an adeno-associated virus (AAV) serotype rh10 gene transfer vector expressing human FXN, corrected the stress-induced ejection fraction and fractional shortening phenotypes. Treated αMyhc mice exhibited exercise performance on a treadmill indistinguishable from littermate controls (p > 0.07). These αMyhc mice provide an ideal model to study long-term cardiac complications due to FA and AAV-mediated gene therapy correction of stress-induced cardiac phenotypes typical of human FA.


Asunto(s)
Cardiomiopatías/terapia , Dependovirus/genética , Ataxia de Friedreich/complicaciones , Terapia Genética , Vectores Genéticos/administración & dosificación , Proteínas de Unión a Hierro/genética , Estrés Fisiológico , Animales , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Fenotipo , Frataxina
19.
Hum Gene Ther ; 31(1-2): 57-69, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608704

RESUMEN

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder caused by repetitive trauma to the central nervous system (CNS) suffered by soldiers, contact sport athletes, and civilians following accident-related trauma. CTE is a CNS tauopathy, with trauma-induced inflammation leading to accumulation of hyperphosphorylated forms of the microtubule-binding protein Tau (pTau), resulting in neurofibrillary tangles and progressive loss of neurons. At present, there are no therapies to treat CTE. We hypothesized that direct CNS administration of an adeno-associated virus (AAV) vector coding for an anti-pTau antibody would generate sufficient levels of anti-pTau in the CNS to suppress pTau accumulation thus interrupting the pathogenic process. Using a serotype AAVrh.10 gene transfer vector coding for a monoclonal antibody directed against pTau, we demonstrate the feasibility of this strategy in a murine CTE model in which pTau accumulation was elicited by repeated traumatic brain injury (TBI) using a closed cortical impact procedure over 5 days. Direct delivery of AAVrh.10 expression vectors coding for either of the two different anti-pTau antibodies to the hippocampus of these TBI mice significantly reduced pTau levels across the CNS. Using doses that can be safely scaled to humans, the data demonstrate that CNS administration of AAVrh.10anti-pTau is effective, providing a new strategy to interrupt the CTE consequences of TBI.


Asunto(s)
Encefalopatía Traumática Crónica/genética , Encefalopatía Traumática Crónica/terapia , Terapia Genética , Proteínas tau/genética , Animales , Anticuerpos Monoclonales/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Unión Proteica , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo
20.
Hum Gene Ther ; 31(23-24): 1237-1259, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33233962

RESUMEN

A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Dependovirus/genética , Radioisótopos de Yodo/farmacología , Imagen de Cuerpo Entero/métodos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Dependovirus/química , Vectores Genéticos/genética , Humanos , Radioisótopos de Yodo/química , Primates , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA