Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 20(14): 15171-9, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22772215

RESUMEN

We present femtosecond laser-induced forward transfer of focused ion beam pre-machined discs of crystalline magneto-optic yttrium iron garnet (YIG) films. Debris-free circular micro-discs with smooth edges and surface uniformity have been successfully printed. The crystalline nature of the printed micro-discs has not been altered by the LIFT printing process, as was confirmed via micro-Raman measurements.

2.
Talanta ; 238(Pt 2): 123056, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801912

RESUMEN

We report the use of a laser-based fabrication process in the creation of paper-based flow-through filters that when combined with a traditional lateral flow immunoassay provide an alternative pathway for the detection of a pre-determined analyte over a wide concentration range. The laser-patterned approach was used to create polymeric structures that alter the porosity of the paper to produce porous flow-through filters, with controllable levels of porosity. When located on the top of the front end of a lateral flow immunoassay the flow-through filters were shown to block particles (of known sizes of 200 nm, 500 nm, 1000 nm and 3000 nm) that exceed the effective pore size of the filter while allowing smaller particles to flow through onto a lateral flow immunoassay. The analyte detection is based on the use of a size-exclusive filter that retains a complex (∼3 µm in size) formed by the binding of the target analyte with two antibodies each of which is tagged with different-sized labels (40 nm Au-nanoparticles and 3 µm latex beads), and which is larger than the effective pore size of the filter. This method was tested for the detection of C-reactive protein in a broad concentration range from 10 ng/ml to 100,000 ng/ml with a limit-of-detection found at 13 ng/ml and unlike other reported methods used for analyte detection, with this technique we are able to counter the Hook effect which is a limiting factor in many lateral flow immunoassays.


Asunto(s)
Proteína C-Reactiva , Inmunoensayo , Nanopartículas , Anticuerpos , Proteína C-Reactiva/aislamiento & purificación , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Rayos Láser
3.
Opt Express ; 19(10): 9814-9, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21643238

RESUMEN

Titanium (Ti)-in-diffused lithium niobate waveguide mode filters fabricated using laser-induced forward transfer followed by thermal diffusion are presented. The mode control was achieved by adjusting the separation between adjacent Ti segments thus varying the average value of the refractive index along the length of the in-diffused channel waveguides. The fabrication details, loss measurements and near-field optical characterization of the mode filters are presented. Modeling results regarding the device performance are also discussed.

4.
Opt Express ; 17(21): 18681-92, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20372601

RESUMEN

The observation of latent light-assisted poling (LAP) in lithium niobate single crystals is reported. More specifically, the nucleation field is reduced and remains reduced for an extended time period (up to several hours) after irradiation with ultrafast (approximately 150 fs) laser light at a wavelength of 400 nm. The maximum nucleation field reduction measured using latent-LAP (62%) was significantly higher in comparison with regular non-time-delayed LAP (41%) under identical irradiation conditions in undoped congruent lithium niobate crystals. No latent-LAP effect was observed in MgO-doped crystals for the experimental conditions used, despite the strong effect observed using regular LAP. The latent-LAP effect is attributed to the formation of a slowly decaying photo-induced space-charge distribution which assists local ferroelectric domain nucleation. The dynamics of latent-LAP are compared with the dynamics of photorefractive grating decay, recorded in lithium niobate crystals of different doping, confirming the space charge hypothesis.

5.
Opt Express ; 17(26): 23755-64, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20052086

RESUMEN

An experimental study of the spectral and electro-optic response of direct UV-written waveguides in LiNbO3 is reported. The waveguides were written using c.w. laser radiation at 275, 300.3, 302, and 305 nm wavelengths with various writing powers (35-60 mW) and scan speeds (0.1-1.0 mm/sec). Spectral analysis was used to determine the multimode and single mode wavelength regions and, the cut-off point of the fabricated waveguides. Electro-optic characterization of these waveguides reveals that the electro-optic coefficient (r33) decreases for longer writing wavelengths, with a maximum of 31 pm/V for 275 nm and, is reduced to 14 pm/V for waveguides written with 305 nm.


Asunto(s)
Niobio/química , Niobio/efectos de la radiación , Óxidos/química , Óxidos/efectos de la radiación , Refractometría/instrumentación , Diseño Asistido por Computadora , Cristalización , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Propiedades de Superficie , Rayos Ultravioleta
6.
Opt Express ; 16(4): 2336-50, 2008 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-18542312

RESUMEN

The inversion of ferroelectric domains in lithium niobate by a scanning focused ultra-violet laser beam (lambda = 244 nm) is demonstrated. The resulting domain patterns are interrogated using piezoresponse force microscopy and by chemical etching in hydrofluoric acid. Direct ultra-violet laser poling was observed in un-doped congruent, iron doped congruent and titanium in-diffused congruent lithium niobate single crystals. A model is proposed to explain the mechanism of domain inversion.

7.
Lab Chip ; 16(17): 3296-303, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27436100

RESUMEN

We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.

8.
Lab Chip ; 15(20): 4054-61, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26329148

RESUMEN

We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

9.
Lab Chip ; 14(23): 4567-74, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25286149

RESUMEN

Paper-based microfluidics is a rapidly progressing inter-disciplinary technology driven by the need for low-cost alternatives to conventional point-of-care diagnostic tools. For transport of reagents/analytes, such devices often consist of interconnected hydrophilic fluid-flow channels that are demarcated by hydrophobic barrier walls that extend through the thickness of the paper. Here, we present a laser-based fabrication procedure that uses polymerisation of a photopolymer to produce the required fluidic channels in paper. Experimental results showed that the structures successfully guide the flow of fluids and allow containment of fluids in wells, and hence the technique is suitable for fabrication of paper-based microfluidic devices. The minimum width for the hydrophobic barriers that successfully prevented fluid leakage was ~120 µm and the minimum width for the fluidic channels that can be formed was ~80 µm, the smallest reported so far for paper-based fluidic patterns.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Papel , Celulosa/química , Diseño de Equipo , Interacciones Hidrofóbicas e Hidrofílicas , Rayos Láser , Procesos Fotoquímicos , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA