Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30704899

RESUMEN

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Asunto(s)
Autofagosomas/enzimología , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Glucógeno Sintasa Quinasa 3/metabolismo , Metabolismo de los Lípidos , Hígado/enzimología , Lisina Acetiltransferasa 5/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Gotas Lipídicas/metabolismo , Hígado/patología , Lisina Acetiltransferasa 5/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Fosfato/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transducción de Señal , Transactivadores/genética , Proteínas Supresoras de Tumor
2.
FASEB J ; 38(1): e23390, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38169064

RESUMEN

Lymph node metastasis (LNM) is one of the common features of oral tongue squamous cell carcinoma (OTSCC). LNM is also taken as a sign of advanced OTSCC and poor survival rate. Recently, single-cell RNA sequencing has been applied in investigating the heterogeneity of tumor microenvironment and discovering the potential biomarkers for helping the diagnosis and prognosticating. Pathogenesis of LNM in OTSCC remains unknown. Specifically, cancer-associated fibroblasts (CAFs) and epithelial tumor cells could foster the progression of tumors. Thus, in this study, we aimed to comprehensively analyze the roles of subpopulations of CAFs and epithelial tumor cells in lymph node metastatic OTSCC using the integration of OTSCC single-cell RNA sequencing datasets. Four distinct subtypes of CAFs, namely vascular CAFs, myofibroblast CAFs, inflammatory CAFs, and growth arrest CAFs were successfully discovered in LNM tumor and confirmed the roles of GAS and PTN pathways in the progression of tumor metastasis. In addition, NKAIN2+ epithelial cells and FN1+ epithelial cells specifically exhibited an upregulation of PTN, NRG, MIF, and SPP1 signaling pathways in the metastatic OTSCC. In doing so, we put forth some potential biomarkers that could be utilized for the purpose of diagnosing and prognosticating OTSCC during its metastatic phase and tried to confirm by immunofluorescence assays.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Lengua , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología , Fibroblastos/patología , Células Epiteliales/patología , Biomarcadores , Metástasis Linfática/patología , Neoplasias de Cabeza y Cuello/patología , Análisis de Secuencia de ARN , Microambiente Tumoral
3.
J Transl Med ; 22(1): 58, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221609

RESUMEN

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Melatonina , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Síndrome de Liberación de Citoquinas/terapia , Factores Inmunológicos/farmacología , Inmunoterapia Adoptiva/efectos adversos , Melatonina/farmacología , Recurrencia Local de Neoplasia , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Animales , Ratones
4.
Hum Reprod ; 39(4): 658-673, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38335261

RESUMEN

STUDY QUESTION: What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER: EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY: EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION: EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE: EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.


Asunto(s)
Astenozoospermia , Canales de Calcio , Vesículas Extracelulares , Semen , Motilidad Espermática , Humanos , Masculino , Astenozoospermia/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Péptidos/metabolismo , Péptidos/farmacología , Semen/química , Semen/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo
5.
Cell Commun Signal ; 22(1): 156, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424607

RESUMEN

Exosomes are nanoscale extracellular vesicles present in bodily fluids that mediate intercellular communication by transferring bioactive molecules, thereby regulating a range of physiological and pathological processes. Exosomes can be secreted from nearly all cell types, and the biological function of exosomes is heterogeneous and depends on the donor cell type and state. Recent research has revealed that the levels of exosomes released from the endosomal system increase in cells undergoing programmed cell death. These exosomes play crucial roles in diseases, such as inflammation, tumors, and autoimmune diseases. However, there is currently a lack of systematic research on the differences in the biogenesis, secretion mechanisms, and composition of exosomes under different programmed cell death modalities. This review underscores the potential of exosomes as vital mediators of programmed cell death processes, highlighting the interconnection between exosome biosynthesis and the regulatory mechanisms governing cell death processes. Furthermore, we accentuate the prospect of leveraging exosomes for the development of innovative biomarkers and therapeutic strategies across various diseases.


Asunto(s)
Exosomas , Vesículas Extracelulares , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular , Biomarcadores/metabolismo , Apoptosis
6.
Phys Chem Chem Phys ; 26(3): 2395-2401, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38168797

RESUMEN

Two novel B-embedded disulfide-bridged π-conjugated compounds (BS-CZ and BS-N) bearing different electron donor groups (phenyl carbazole and triphenylamine) have been prepared and show different optical mechanisms. The compound BS-CZ exhibits significant multiple resonance thermal activation delayed fluorescence (MR-TADF) properties with a small singlet-triplet energy gap (ΔEST = 0.16 eV) and a narrow half-peak full width (FWHM = 33 nm), while the compound BS-N shows traditional fluorescence luminescence (FL) characteristics with a larger ΔEST (0.28 eV) and FWHM (57 nm). Time-dependent density functional theory (TD-DFT) calculations show that the lowest excited singlet state (S1) of the compound BS-CZ exhibits local excited (LE) state characteristics, while the charge transfer (CT) state characteristics can be found in S1 of the compound BS-N. Considering good optical performance, the compound BS-CZ is used as an emitting layer of the organic light-emitting diode device and achieved saturated blue emission (473 nm) with a narrow FWHM (39 nm), and CIE color coordinates of (0.12, 0.21). This work provides an important strategy for the optical mechanism regulation and photoelectric applications of B-embedded disulfide-bridged π-conjugated molecules.

7.
J Nanobiotechnology ; 22(1): 18, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172932

RESUMEN

Exosomes are nanoscale extracellular vesicles secreted by cells and enclosed by a lipid bilayer membrane containing various biologically active cargoes such as proteins, lipids, and nucleic acids. Engineered exosomes generated through genetic modification of parent cells show promise as drug delivery vehicles, and they have been demonstrated to have great therapeutic potential for treating cancer, cardiovascular, neurological, and immune diseases, but systematic knowledge is lacking regarding optimization of drug loading and assessment of delivery efficacy. This review summarizes current approaches for engineering exosomes and evaluating their drug delivery effects, and current techniques for assessing exosome drug loading and release kinetics, cell targeting, biodistribution, pharmacokinetics, and therapeutic outcomes are critically examined. Additionally, this review synthesizes the latest applications of exosome engineering and drug delivery in clinical translation. The knowledge compiled in this review provides a framework for the rational design and rigorous assessment of exosomes as therapeutics. Continued advancement of robust characterization methods and reporting standards will accelerate the development of exosome engineering technologies and pave the way for clinical studies.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Exosomas/metabolismo , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Preparaciones Farmacéuticas/metabolismo
8.
World J Surg Oncol ; 22(1): 150, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844951

RESUMEN

PURPOSE: To evaluate the predictors for short and long term urinary continence (UC) recovery after laparoscopic radical prostatectomy (LRP) from clinical and oncological variables. METHODS: We retrospectively collected data from 142 prostate cancer patients who underwent LRP between September 2014 and June 2021 at a tumor specialist diagnosis and treatment center in China. The rate of post-prostatectomy incontinence (PPI) was evaluated from immediate and at 3, 6 and 12 mo after LRP, and UC was defined as the use of no or one safety pad. Sixteen clinical and oncological variables were analyzed by univariate and multivariate regression analysis to determine whether they were associated with short (3 mo) or long term (12 mo) UC recovery after LRP. RESULTS: After eliminating patients who were lost to follow-up, 129 patients were eventually included. The mean ± SD age was 68 ± 6.3 years. The UC rates of immediate, 3, 6 and 12 mo after the operation were 27.9%, 54.3%, 75.2% and 88.4%, respectively. Multivariate analyses revealed that membranous urethral length (MUL) was a protective predictor of UC after catheter extraction(P < 0.001), and at 3 mo (P < 0.001), 6 mo (P < 0.001) and 12 mo (P = 0.009) after surgery. CONCLUSION: MUL is a significant independent factor that can contribute to short and long term UC recovery post-LRP, which may assist clinicians and their patients in counseling of treatment.


Asunto(s)
Laparoscopía , Complicaciones Posoperatorias , Prostatectomía , Neoplasias de la Próstata , Incontinencia Urinaria , Humanos , Masculino , Prostatectomía/efectos adversos , Prostatectomía/métodos , Laparoscopía/efectos adversos , Laparoscopía/métodos , Neoplasias de la Próstata/cirugía , Incontinencia Urinaria/etiología , Incontinencia Urinaria/epidemiología , Anciano , Estudios Retrospectivos , China/epidemiología , Complicaciones Posoperatorias/etiología , Estudios de Seguimiento , Pronóstico , Persona de Mediana Edad , Recuperación de la Función
9.
Ecotoxicol Environ Saf ; 273: 116106, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377782

RESUMEN

Silica nanoparticle (SiNP) exposure induces severe pulmonary inflammation and fibrosis, but the pathogenesis remains unclear, and effective therapies are currently lacking. To explore the mechanism underlying SiNPs-induced pulmonary fibrosis, we constructed in vivo silica exposure animal models and in vitro models of silica-induced macrophage pyroptosis and fibroblast transdifferentiation. We found that SiNP exposure elicits upregulation of pulmonary proteins associated with pyroptosis, including NLRP3, ASC, IL-1ß, and GSDMD, while the immunofluorescence staining co-localized NLRP3 and GSDMD with macrophage-specific biomarker F4/80 in silica-exposed lung tissues. However, the NLRP3 inhibitor MCC950 and classical anti-fibrosis drug pirfenidone (PFD) were found to be able to alleviate silica-induced collagen deposition in the lungs. In in vitro studies, we exposed the fibroblast to a conditioned medium from silica-induced pyroptotic macrophages and found enhanced expression of α-SMA, suggesting increased transdifferentiation of fibroblast to myofibroblast. In line with in vivo studies, the combined treatment of MCC950 and PFD was demonstrated to inhibit the expression of α-SMA and attenuate fibroblast transdifferentiation. Mechanistically, we adopted high throughput RNA sequencing on fibroblast with different treatments and found activated signaling of relaxin and osteoclast differentiation pathways, where the expression of the dysregulated genes in these two pathways was examined and found to be consistently altered both in vitro and in vivo. Collectively, our study demonstrates that SiNP exposure induces macrophage pyroptosis, which subsequently causes fibroblast transdifferentiation to myofibroblasts, in which the relaxin and osteoclast differentiation signaling pathways play crucial roles. These findings may provide valuable references for developing new therapies for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Relaxina , Animales , Fibrosis Pulmonar/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dióxido de Silicio/toxicidad , Relaxina/metabolismo , Relaxina/farmacología , Piroptosis/fisiología , Osteoclastos/metabolismo , Osteoclastos/patología , Fibroblastos , Fibrosis , Macrófagos
10.
Pestic Biochem Physiol ; 200: 105846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582578

RESUMEN

In recent years, the fungal disease 'pepper stem rot', contracted from the soil-borne pathogen sclerotium rolfsii, has been increasing year by year, causing significant losses to the pepper (Capsicum annuum L.) industry. To investigate the infection mechanism of stem rot, the fungus S. rolfsii was used to infect the roots of pepper plants, and was found to affect root morphology and reduce root activity, which subsequently inhibited root growth and development. With fungal infestation, its secretions (oxalic acid, PG and PMG enzyme) were able to break normal tissues in the stem base and induced the burst of the active oxygen, which leads to injury aggravation. Morphological observations of the site of damage at the base of the stem using SEM revealed that the vascular bundles and stomata were completely blocked by hyphae, resulting in a blockade of material exchange in the plant. It was subsequently found that most of the stomata in the leaves were closed, which caused the leaves to lose their ability to photosynthesize, then turned yellow, wilt, shed, and the plant died. Commercialized fungicide thifluzamide with excellent in vitro (EC50 = 0.1 µg/mL) and in vivo curative (EC50 = 29.2 µg/mL) antifungal activity was selected to control the stem rot disease in peppers. The results demonstrated that it was able to suppress the secretion of associated pathogenic factors and reduce the outbursts of reactive oxygen species, thus reducing the damage caused by S. rolfsii at the base of the plant's stem and also enhancing the root activity of the infected plant, thereby promoting root growth. It could also inhibit fungal growth, unblock the vascular bundles and stomata, maintain a balance of material and energy exchange within the plant, and thus restore the damaged plant to its normal growth capacity. All the results will provide an adequate reference for the prevention and control of stem rot disease on peppers with thifluzamide.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Tiazoles , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Anilidas
11.
Aesthetic Plast Surg ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862661

RESUMEN

BACKGROUND: For patients looking for temporary results or who do not want surgery, nonsurgical rhinoplasty using filler injections has become increasingly popular. Filler materials and surgical techniques have improved in recent years, but serious complications remain. Therefore, the aim of this systematic review is to summarize the common types of fillers and injection techniques, complications, and treatment to help clinicians perform in a safer and more effective way. METHODS: A systematic review was performed using keywords and Medical Subject Headings search terms. PubMed, Embase, and the Cochrane Library were searched using the appropriate search terms. Data collected from each study included injection materials, location, technique, patient satisfaction and complications, and treatment. RESULTS: From the 1812 studies identified, 30 were included in the systematic review. A total of 9657 patients underwent nonsurgical rhinoplasty, most commonly with hyaluronic acid (HA) (96.76%), followed by calcium hydroxyapatite (CaHA) (1.22%). Overall satisfaction was 99.08%. The overall incidence of complications was 39.11%, with the highest incidence of erythema and swelling (27.95%). Most of the complications are mild, but there are still 0.27% of the patients who have undergone severe complication-an arterial occlusion. CONCLUSIONS: Nonsurgical rhinoplasty is an effective and relatively safe option for improving the profile of the nose, with a short operative time and high patient satisfaction. Most of the complications were mild, but still serious vascular complications such as blindness, skin necrosis, and stroke were as high as 0.27%. A thorough understanding of the anatomy of the nasal vessels and a precise surgical technique is an important basis for prevention. A BULLET POINT LIST: (1) We summarize the common types of fillers and injection techniques, complications, and treatment of complications to guide physicians to perform nonsurgical rhinoplasty in a safer and more effective manner. (2) Out of 1812 studies through the search strategy, 30 articles were included in the systematic review. A total of 9657 patients underwent nonsurgical rhinoplasty. (3) Nonsurgical rhinoplasty is an effective and relatively safe option to improve the profile of the nose, with a short surgical time and high patient satisfaction. (4) Most of the complications were mild, but some severe complications due to the vascular factors such as blindness, skin necrosis, and cerebral infarction need to be vigilant. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

12.
Aesthetic Plast Surg ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789811

RESUMEN

BACKGROUND: Autologous adipose tissue is an ideal material for soft tissue filling and transplantation; however, high volumes of fat absorption over time lead to a relatively low overall survival percentage. The survival and differentiation of adipose-derived stem cells (ADSCs) in the transplanted microenvironment might improve adipose graft survival. Adipocytes have been reported to affect ADSC activation. However, its underlying mechanisms remain unclear. METHODS: Human ADSCs were incubated in a culture medium supplemented with hypoxic or normoxic conditioned culture medium (CM) derived from human adipocytes. Neuronal Pentraxin 1 (NPTX1) was overexpressed or knocked down in human adipocytes using an overexpression vector (NPTX1 OE) or small interfering RNA (siRNA) transfection, respectively. ADSC differentiation and paracrine secretion were assessed. Nude mice were implanted with human adipocytes and ADSCs. The adipose tissue was subsequently evaluated by histological analysis. RESULTS: CM from hypoxic-stimulated human adipocytes significantly facilitated the differentiation ability and paracrine levels of ADSCs. NPTX1 was significantly up-regulated in human adipocytes exposed to hypoxic conditions. In vitro, CM derived from hypoxia-stimulated human adipocytes or NPTX1-overexpressing human adipocytes exposed to normoxia promoted ADSC differentiation and paracrine; after silencing NPTX1, the facilitating effects of hypoxia-treated human adipocytes on ADSC activation were eliminated. Similarly, in vivo, the NPTX1 OE + normoxia-CM group saw improved histological morphology and fat integrity, less fibrosis and inflammation, and increased vessel numbers compared with the OE NC + normoxia-CM group; the adipocyte grafts of the si-NC + hypoxia-CM group yielded the most improved histological morphology, fat integrity, and the most vessel numbers. However, these enhancements of ADSC activation and adipose graft survival were partially abolished by NPTX1 knockdown in human adipocytes. CONCLUSION: NPTX1 might mediate the facilitating effects of hypoxia-stimulated human adipocytes on ADSC activation, thereby improving adipose tissue survival rate after autologous fat transplantation and the effectiveness of autologous fat transplantation through promoting ADSC activation. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

13.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542875

RESUMEN

BACKGROUND: Trapa bispinosa shells (TBs) and its flesh (TBf) have been recognized for their medicinal properties, including antioxidant, antitumor, and immunomodulatory effects. Despite these benefits, TBs are often discarded as waste material, and their applications remain to be further explored. METHODS: In this study, we optimized the solid-state fermentation process of Ganoderma sinense (GS) with TBs using a response surface experiment methodology to obtain the fermented production with the highest water extract rate and DPPH free radical scavenging activity. We prepared and characterized pre-fermentation purified polysaccharides (P1) and post-fermentation purified polysaccharides (P2). Alcoholic extracts before (AE1) and after (AE2) fermentation were analyzed for active components such as polyphenols and flavonoids using UPLC-QTOF-MS/MS (ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry). Mouse macrophages (RAW 264.7) were employed to compare the immune-stimulating ability of polysaccharides and the antioxidant activity of AE1 and AE2. RESULTS: Optimal fermentation conditions comprised a duration of 2 days, a temperature of 14 °C, and a humidity of 77%. The peak water extract yield and DPPH free radical scavenging rate of the water extract from TBs fermented by GS were observed under these conditions. The enhanced activity may be attributed to changes in the polysaccharide structure and the components of the alcoholic extract. The P2 treatment group indicated more secretion of RAW 264.7 cells of NO, iNOS, IL-2, IL-10, and TNF-α than P1, which shows that the polysaccharides demonstrated increased immune-stimulating ability, with their effect linked to the NF-кB pathway. Moreover, the results of the AE2 treatment group indicated that secretion of RAW 264.7 cells of T-AOC and T-SOD increased and MDA decreased, which shows that the alcoholic extract demonstrated enhanced antioxidant activity, with its effect linked to the Nrf2/Keap1-ARE pathway. CONCLUSIONS: Biphasic fermentation of Trapa bispinosa shells by Ganoderma sinense could change the composition and structure of the polysaccharides and the composition of the alcoholic extract, which could increase the products' immunomodulatory and antioxidant activity.


Asunto(s)
Antioxidantes , Ganoderma , Lythraceae , Animales , Ratones , Antioxidantes/análisis , Fermentación , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Espectrometría de Masas en Tándem , Factor 2 Relacionado con NF-E2/metabolismo , Polisacáridos/química , Ganoderma/química , Agua/metabolismo , Radicales Libres/metabolismo
14.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792058

RESUMEN

The 1092 bp F3H gene from Trapa bispinosa Roxb., which was named TbF3H, was cloned and it encodes 363 amino acids. Bioinformatic and phylogenetic tree analyses revealed the high homology of TbF3H with flavanone 3-hydroxylase from other plants. A functional analysis showed that TbF3H of Trapa bispinosa Roxb. encoded a functional flavanone 3-hydroxylase; it catalyzed the formation of dihydrokaempferol (DHK) from naringenin in S. cerevisiae. The promoter strengths were compared by fluorescence microscopy and flow cytometry detection of the fluorescence intensity of the reporter genes initiated by each constitutive promoter (FITC), and DHK production reached 216.7 mg/L by the promoter adjustment strategy and the optimization of fermentation conditions. The results presented in this study will contribute to elucidating DHK biosynthesis in Trapa bispinosa Roxb.


Asunto(s)
Flavanonas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Flavanonas/biosíntesis , Flavanonas/metabolismo , Filogenia , Regiones Promotoras Genéticas , Clonación Molecular/métodos , Flavonoides/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fermentación
15.
Angew Chem Int Ed Engl ; 63(17): e202401602, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345598

RESUMEN

Electrochemical biomass conversion holds promise to upcycle carbon sources and produce valuable products while reducing greenhouse gas emissions. To this end, deep insight into the interfacial mechanism is essential for the rational design of an efficient electrocatalytic route, which is still an area of active research and development. Herein, we report the reduction of dihydroxyacetone (DHA)-the simplest monosaccharide derived from glycerol feedstock-to acetol, the vital chemical intermediate in industries, with faradaic efficiency of 85±5 % on a polycrystalline Cu electrode. DHA reduction follows preceding dehydration by coordination with the carbonyl and hydroxyl groups and the subsequent hydrogenation. The electrokinetic profile indicates that the rate-determining step (RDS) includes a proton-coupled electron transfer (PCET) to the dehydrated intermediate, revealed by coverage-dependent Tafel slope and isotopic labeling experiments. An approximate zero-order dependence of H+ suggests that water acts as the proton donor for the interfacial PCET process. Leveraging these insights, we formulate microkinetic models to illustrate its origin that Eley-Rideal (E-R) dominates over Langmuir-Hinshelwood (L-H) in governing Cu-mediated DHA reduction, offering rational guidance that increasing the concentration of the adsorbed reactant alone would be sufficient to promote the activity in designing practical catalysts.

16.
J Transl Med ; 21(1): 310, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158918

RESUMEN

BACKGROUND: Cognitive dysfunction is the most common non-motor symptom in Parkinson's disease (PD), and timely detection of a slight cognitive decline is crucial for early treatment and prevention of dementia. This study aimed to build a machine learning model based on intra- and/or intervoxel metrics extracted from diffusion tensor imaging (DTI) to automatically classify PD patients without dementia into mild cognitive impairment (PD-MCI) and normal cognition (PD-NC) groups. METHODS: We enrolled PD patients without dementia (52 PD-NC and 68 PD-MCI subtypes) who were assigned to the training and test datasets in an 8:2 ratio. Four intravoxel metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), and two novel intervoxel metrics, local diffusion homogeneity (LDH) using Spearman's rank correlation coefficient (LDHs) and Kendall's coefficient concordance (LDHk), were extracted from the DTI data. Decision tree, random forest, and eXtreme gradient boosting (XGBoost) models based on individual and combined indices were built for classification, and model performance was assessed and compared via the area under the receiver operating characteristic curve (AUC). Finally, feature importance was evaluated using SHapley Additive exPlanation (SHAP) values. RESULTS: The XGBoost model based on a combination of the intra- and intervoxel indices achieved the best classification performance, with an accuracy of 91.67%, sensitivity of 92.86%, and AUC of 0.94 in the test dataset. SHAP analysis showed that the LDH of the brainstem and MD of the right cingulum (hippocampus) were important features. CONCLUSIONS: More comprehensive information on white matter changes can be obtained by combining intra- and intervoxel DTI indices, improving classification accuracy. Furthermore, machine learning methods based on DTI indices can be used as alternatives for the automatic identification of PD-MCI at the individual level.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Humanos , Imagen de Difusión Tensora , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/diagnóstico por imagen , Árboles de Decisión
17.
Microb Cell Fact ; 22(1): 100, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198642

RESUMEN

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) positive breast cancer is an aggressive subtype, accounting for around 20% of all breast cancers. The development of HER2-targeted therapy has substantially improved patient outcomes. Nevertheless, the increasing rate of side effects and resistance to targeted drugs limit their efficacy in clinical practice. In this study, we designed and synthesized a new immunotoxin, 4D5Fv-PE25, which targets HER2-positive breast cancer, and evaluated its effectiveness in vitro and in vivo. RESULTS: The 4D5Fv-PE25 was expressed in high-density Escherichia coli (E. coli.) using the fermentor method and refined via hydrophobicity, ion exchange, and filtration chromatography, achieving a 56.06% recovery rate. Additionally, the semi-manufactured product with 96% purity was prepared into freeze-dried powder by the lyophilized process. Flow cytometry was used to detect the expression of HER2 in SK-BR-3, BT-474, MDA-MB-231, and MDA-MB-468 breast cancer cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method was used for cytotoxicity assay, and the half-maximal inhibitory concentration (IC50) of 4D5Fv-PE25 lyophilized products to HER2-positive cell line SK-BR-3 was 12.53 ng/mL. The 4D5Fv-PE25 was injected into xenograft tumor mice via the tail vein on the 1st, 4th, and 8th day, it indicated that the growth of tumor volume was effectively inhibited for 24 days, although the 4D5Fv-PE25 was metabolized within 60 min by measuring the release of 3 H-Thymidine radiation. CONCLUSION: we succeeded in producing the 4D5Fv-PE25 freeze-dried powder using the prokaryotic expression method, and it could be employed as a potential drug for treating HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Inmunotoxinas , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Escherichia coli/metabolismo , Inmunotoxinas/farmacología , Polvos/uso terapéutico , Receptor ErbB-2/genética
18.
Phys Chem Chem Phys ; 25(9): 6955-6962, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805571

RESUMEN

Iodide ions (I- and I3-) in perovskites tend to migrate resulting in phase segregation and degradation of perovskite films and devices under illumination or operation conditions. In order to overcome this intrinsic difficulty, passivation and additive strategies have been developed in many studies. In this work, we introduced polyetheramine (PEA) into perovskite films to inhibit the migration and loss of iodides and suppress defects related to these migrated ions. The perovskite films with PEA barely suffered iodide loss even under long-term ultraviolet (UV) illumination and possessed a lower trap density than that of the pristine films before and after aging under UV illumination. Density functional theory (DFT) calculations revealed that PEA can form strong interactions with iodides and Pb2+ in perovskites via PbO and H-I bonds, and the iodide ions (I- and I3-) could be locked firmly by PEA, preventing them from migration or loss. Using this method, the efficiency of perovskite solar cells (PSCs) can be improved from 19.71% (without PEA) to 22.02% (with PEA). After 200 h of maximum power point (MPP) tracking, the efficiency of PSCs with PEA remained 89% of its initial value and that of PSCs without PEA fully degraded.

19.
J Sep Sci ; 46(17): e2300235, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37387561

RESUMEN

Aconitum carmichaelii is widely used to treat chronic and intractable diseases due to its remarkable curative effect, but it is also a highly toxic herb with severe cardiac and neurotoxicity. It has been combined with honey for thousands of years to reduce toxicity and enhance efficacy, but there has been no study on the chemical constituent changes in the honey-processing so far. In this study, the chemical constituents of A. carmichaelii before and after honey-processing were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. The results showed that a total of 118 compounds were identified, of which six compounds disappeared and five compounds were newly produced after honey-processing, and the cleavage pathway of main components was elucidated. At the same time, 25 compounds were found to have significant effects on different products, among which four compounds with the biggest difference were selected for quantitative analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry. This study not only explained the chemical differences between the different products, but also helped to control the quality of the honey-processed products more effectively, and laid a foundation for further elucidating the mechanism of chemical constituent change during the honey-processing of A. carmichaelii.


Asunto(s)
Aconitum , Medicamentos Herbarios Chinos , Miel , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Aconitum/química , Miel/análisis , Medicamentos Herbarios Chinos/análisis
20.
J Asian Nat Prod Res ; 25(5): 456-470, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35832012

RESUMEN

Curcumin is a polyphenolic compound derived from the plant turmeric and the structural instability of which limits its further clinical applications. In this study, 11 curcumin analogs with more stable scaffold were prepared and evaluated. The results indicated that the optimal compound Y-11 exhibited the strongest antiproliferative activities against lung cancer cells including H460 and H1650. Further studies showed that Y-11 potentially inhibited hDHODH, induced cell cycle arrest and apoptosis as well as down-regulated crucial signal pathway protein expression in H1650 cells. In the conclusion, the newly designed curcumin analog Y-11 may be suitable for further development in lung cancer treatment.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias Pulmonares , Curcumina/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Puntos de Control del Ciclo Celular , Apoptosis , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA