Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photosynth Res ; 156(3): 355-366, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36602713

RESUMEN

Nitrogen allocated to the photosynthetic apparatus and its partitioning into different photosynthetic components is crucial for understanding plant carbon gain and plant productivity. It is known that photosynthetic nitrogen content and partitioning are controlled by both environmental and vegetation factors and have versatile and dynamic responses. However, such responses are greatly simplified in most current gas exchange models, in which only a prescribed relationship is commonly applied to describe the effect of nitrogen on photosynthesis and with limited model performance. While within-canopy variation at a specific time in leaf photosynthetic nitrogen content and partitioning has been studied previously, far less attention has been paid to the seasonal dynamics of photosynthetic nitrogen content and partitioning, which is especially critical to deciduous forests. In this study, we integrated long-term field observations in deciduous forests in Japan to determine seasonal patterns of photosynthetic nitrogen content and partitioning (rubisco, electron transport, and light capture) and to examine how photosynthetic nitrogen content and partitioning varied seasonally in deciduous forest canopies growing at different altitudes. The results demonstrated that there were remarkable seasonal variations in both photosynthetic nitrogen content and partitioning in deciduous forests along the altitudinal gradient. Moreover, photosynthetic nitrogen use efficiency was well explained by nitrogen partitioning rather than total leaf nitrogen. These results suggest that seasonal patterns of nitrogen partitioning should be integrated into ecosystem models to accurately project emergent properties of ecosystem productivity on local, regional, and global scales.


Asunto(s)
Ecosistema , Nitrógeno , Estaciones del Año , Árboles/fisiología , Bosques , Fotosíntesis/fisiología , Hojas de la Planta
2.
Physiol Plant ; 175(5): e14048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882289

RESUMEN

Unveiling informative chlorophyll a fluorescence (ChlF) parameters and leaf morphological/biochemical traits under varying light conditions is important in ecological studies but has less been investigated. In this study, the trait-ChlF relationship and regressive estimation of ChlF parameters from leaf traits under varying light conditions were investigated using a dataset of synchronous measurements of ChlF parameters and leaf morphological/biochemical traits in Mangifera indica L. The results showed that the relationships between ChlF parameters and leaf traits varied across light intensities, as indicated by different slopes and intercepts, highlighting the limitations of using leaf traits alone to capture the dynamics of ChlF parameters. Light drivers, on the other hand, showed a better predictive ability for light-dependent ChlF parameters compared to leaf traits, with light intensity having a large effect on light-dependent ChlF parameters. Furthermore, the responses of ФF and NPQ to light drivers differed between leaf types, with light intensity having an effect on ФF in shaded leaves, whereas it had a primary effect on NPQ in sunlit leaves. These results facilitate and deepen our understanding of how the light environment affects leaf structure and function and, therefore, provide the theoretical basis for understanding plant ecological strategies in response to the light environment.


Asunto(s)
Clorofila , Luz , Clorofila A/análisis , Clorofila/análisis , Fluorescencia , Hojas de la Planta/química , Fotosíntesis
3.
Photosynth Res ; 151(1): 71-82, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34491493

RESUMEN

The plant photosynthetic capacity determines the photosynthetic rates of the terrestrial biosphere. Timely approaches to obtain the spatiotemporal variations of the photosynthetic parameters are urgently needed to grasp the gas exchange rhythms of the terrestrial biosphere. While partial least squares regression (PLSR) is a promising way to predict the photosynthetic parameters maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) rapidly and non-destructively from hyperspectral data, the approach, however, faces a high risk of overfitting and remains a high hurdle for applications. In this study, we propose to incorporate proper band selection techniques for PLSR analysis to refine the goodness-of-fit (GoF) in estimating Vcmax and Jmax. Different band selection procedures coupled with different hyperspectral forms (reflectance, apparent absorption, as well as derivatives) were examined. Our results demonstrate that the GoFs of PLSR models could be greatly improved by combining proper band selection methods (especially the iterative stepwise elimination approach) rather than using full bands as commonly done with PLSR. The results also show that the 1st order derivative spectra had a balance between accuracy (R2 = 0.80 for Vcmax, and 0.94 for Jmax) and denoising (when a Gaussian noise was added to each leaf reflectance spectrum at each wavelength with a standard deviation of 1%) on retrieving photosynthetic parameters from hyperspectral data. Our results clearly illustrate the advantage of using the band selection approach for PLSR dimensionality reduction and model optimization, highlighting the superiority of using derivative spectra for Vcmax and Jmax estimations, which should provide valuable insights for retrieving photosynthetic parameters from hyperspectral remotely sensed data.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Transporte de Electrón , Análisis de los Mínimos Cuadrados , Plantas
4.
J Plant Physiol ; 279: 153831, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252398

RESUMEN

Partial least squares regression (PLSR) is applied increasingly often to predict plant photosynthesis from reflectance spectra. While its applicability across different areas has been examined in previous studies, its stability across time has yet to be evaluated. In this study, we assessed a series of PLSR models built upon three different band selection approaches (iterative stepwise, genetic algorithm, and uninformative variable elimination), in combination with different spectral transforms (original and first-order derivative spectra), for their stabilities in predicting the maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) from hyperspectral reflectance spectra at different temporal scales (seasonal and interannual). The results showed that both photosynthetic parameters can be estimated from leaf hyperspectral reflectance with moderate to good accuracy across different growing stages (R2 = 0.45-0.84) and years (R2 = 0.37-0.97). We further found that the iterative stepwise selection of informative bands when building PLSR models could greatly improve its predictive capacity compared with that of other PLSR models, especially those based on first-order derivative spectra. However, the selected bands of the models for both photosynthetic parameters were, unfortunately not consistent. Furthermore, we could not have identified any model with fixed spectra performed consistently across different seasonal stages and across different years. However, the blue spectral regions were popularly selected throughout the growing stages and in different years. The results demonstrate that leaf spectra-trait estimation using PLSR models varies with time and thus cast doubt over the use of a specific PLSR model to infer leaf traits across different temporal-spatial contexts. The development of a general applicable PLSR model is still in the works.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Análisis de los Mínimos Cuadrados , Fenotipo
5.
Plant Physiol Biochem ; 166: 839-848, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34229164

RESUMEN

Understanding the uncertainty in the parameterization of the two photosynthetic capacity parameters, leaf maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax), is crucial for modeling and predicting carbon fluxes in terrestrial ecosystems. In gas exchange models, to date, Jmax is typically estimated from Vcmax based on a linear regression. However, recent studies have revealed that this relationship varies, dependent upon species, leaf groups, and time, so it is doubtful that the regression applies universally. Furthermore, far less is known regarding how other leaf traits affect the regression. In this study we analyzed the two key photosynthetic parameters and popularly measurable leaf traits, leaf chlorophyll concentration and leaf mass per area (LMA), of cool-temperate forest stands in Japan, aiming to construct a simple regression applicable to temperate deciduous forests, at least. The analysis was based on a long-term field dataset covering years of data for both sunlit and shaded leaves at different altitudes. Results showed that the best-fitted slope of the regression differed markedly from those previously reported, which were typically acquired from sunlit leaves. LMA had a significant effect on the regression, producing the lowest root mean square errors and the highest ratio of performance to deviation values (RPD = 2.017). Although more data are needed to validate in other ecosystems, our approach at least provides a promising way to substantially improve photosynthesis model predictions, by introducing leaf traits into the popular empirical regression of Jmax against Vcmax, and ultimately to better understand the functioning of the photosynthetic machinery.


Asunto(s)
Ecosistema , Bosques , Dióxido de Carbono , Clorofila , Fotosíntesis , Hojas de la Planta , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA