Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(7): 100576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866328

RESUMEN

Hypercholesterolemia is frequently intertwined with hepatosteatosis, hypertriglyceridemia, and hyperglycemia. This study is designed to assess the therapeutic efficacy of miR-206 in contrast to statins in the context of managing hypercholesterolemia in mice. We previously showed that miR-206 is a potent inhibitor of de novo lipogenesis (DNL), cholesterol synthesis, and gluconeogenesis in mice. Given that these processes occur within hepatocytes, we employed a mini-circle (MC) system to deliver miR-206 specifically to hepatocytes (designated as MC-miR-206). A single intravenous injection of MC-miR-206 maintained high levels of miR-206 in the liver for at least two weeks, thereby maintaining suppression of hepatic DNL, cholesterol synthesis, and gluconeogenesis. MC-miR-206 significantly reduced DNA damage, endoplasmic reticulum and oxidative stress, and hepatic toxicity. Therapeutically, both MC-miR-206 and statins significantly reduced total serum cholesterol and triglycerides as well as LDL cholesterol and VLDL cholesterol in mice maintained on the normal chow and high-fat high-cholesterol diet. MC-miR-206 reduced liver weight, hepatic triglycerides and cholesterol, and blood glucose, while statins slightly increased hepatic cholesterol and blood glucose and failed to affect levels of liver weight and hepatic triglycerides. Mechanistically, miR-206 alleviated hypercholesterolemia by inhibiting hepatic cholesterol synthesis, while statins increased HMGCR activity, hepatic cholesterol synthesis, and fecal-neutral steroid excretion. MiR-206 facilitates the regression of hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and hepatosteatosis. MiR-206 outperforms statins by reducing hyperglycemia, hepatic cholesterol levels, and hepatic toxicity.


Asunto(s)
Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Colesterol/sangre , Colesterol/metabolismo , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Anticolesterolemiantes/farmacología , Anticolesterolemiantes/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética
2.
Hepatology ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943861

RESUMEN

BACKGROUND AND AIMS: Hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia are interconnected metabolic disorders. This study is designed to characterize how microRNA-206-3p (miR-206) simultaneously prevents de novo lipogenesis (DNL), cholesterol synthesis, and VLDL production in hepatocytes while promoting cholesterol efflux in macrophages. APPROACH AND RESULTS: MiR-206 levels were reduced in hepatocytes and macrophages of mice subjected to a high-fat, high-cholesterol diet. A negative feedback between LXRα (liver X receptor alpha) and miR-206 is formed to maintain high LXRα and low miR-206 in hepatocytes. Systemic administration of miR-206 alleviated hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia in mice. A significant reduction in LDL cholesterol and VLDL cholesterol but unaltered HDL cholesterol was observed in miR-206-treated mice. Mirroring these findings, miR-206 reprogrammed the transcriptome of hepatocytes towards the inhibition of DNL, cholesterol synthesis, and assembly and secretion of VLDL. In macrophages, miR-206 activated the expression of genes regulating cholesterol efflux. Hepatocyte-specific expression of miR-206 reduced hepatic and circulating triglycerides and cholesterol, as well as VLDL production, while transplantation of macrophages bearing miR-206 facilitated cholesterol efflux. Mechanistically, miR-206 directly targeted Lxrα and Hmgcr in hepatocytes but facilitated expression of Lxrα in macrophages by targeting macrophage-specific tricho-rhino-phalangeal syndrome 1 (TRPS1), a transcription repressor of Lxrα . By targeting Hmgc r and Lxrα , miR-206 inhibited DNL, VLDL production, and cholesterol synthesis in hepatocytes, whereas it drove cholesterol efflux by activating the TRPS1-LXRα axis. CONCLUSIONS: MiR-206, through differentially modulating LXRα signaling in hepatocytes and macrophages, inhibits DNL, promotes cholesterol efflux, and concurrently hinders cholesterol synthesis and VLDL production. MiR-206 simulates the functions of lipid-lowering medications, statins, and LXRα agonists.

3.
Environ Sci Technol ; 58(36): 16066-16075, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39177446

RESUMEN

Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 µM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, KD, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater KDs (66.7 ± 19.6 µM) overlap aqueous aliphatic but not aromatic aldehyde KDs. Phenylacetaldehyde (PA) and other ß,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN's %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.


Asunto(s)
Aldehídos , Monóxido de Carbono , Agua de Mar , Aldehídos/química , Monóxido de Carbono/química , Agua de Mar/química , Cianuro de Hidrógeno/química , Nitrilos/química
4.
Gastroenterology ; 162(2): 575-589, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34678217

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is characterized by intratumoral accumulation of regulatory T cells (Tregs), which suppresses antitumor immunity. This study was designed to investigate how microRNAs regulate immunosuppression in HCC. METHODS: FVB/NJ mice were hydrodynamically injected with AKT/Ras or c-Myc and Sleeping Beauty transposon to induce HCC. The Sleeping Beauty system was used to deliver microRNA-15a/16-1 into livers of mice. Flow cytometry and immunostaining were used to determine changes in the immune system. RESULTS: Hydrodynamic injection of AKT/Ras or c-Myc into mice resulted in hepatic enrichment of Tregs and reduced cytotoxic T cells (CTLs) and HCC development. HCC impaired microRNA-15a/16-1 biogenesis in Kupffer cells (KCs) of AKT/Ras and c-Myc mice. Hydrodynamic injection of microRNA-15a/16-1 fully prevented HCC in AKT/Ras and c-Myc mice, while 100% of control mice died of HCC. Therapeutically, microRNA-15a/16-1 promoted a regression of HCC in both mouse models, impaired hepatic enrichment of Tregs, and increased hepatic CTLs. Mechanistically, a significant increase was observed in serum C-C motif chemokine 22 (CCL22) and transcription of Ccl22 in KCs of AKT/Ras and c-Myc mice. MicroRNA-15a/16-1 prevented KCs from overproducing CCL22 by inhibiting nuclear factor-κB that activates transcription of Ccl22. By reducing CCL22 binding to C-C chemokine receptor type 4 on Tregs, microRNA-15a/16-1 impaired Treg chemotaxis. Disrupting the interaction between microRNA-15a/16-1 and nuclear factor-κB impaired the ability of microRNA-15a/16-1 to prevent hepatic Treg accumulation and HCC. Depletion of cluster of differentiation 8+ T cells and additional treatment of CCL22 recovered growth of HCC that was fully prevented by microRNA-15a/16. CONCLUSIONS: MicroRNA-15a/16-1 attenuates immunosuppression by disrupting CCL22-mediated communication between KCs and Tregs. MicroRNA-15a/16-1 represents a potential immunotherapy against HCC.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Macrófagos del Hígado/inmunología , Neoplasias Hepáticas Experimentales/inmunología , MicroARNs/genética , Linfocitos T Reguladores/inmunología , Escape del Tumor/inmunología , Animales , Carcinoma Hepatocelular/genética , Macrófagos del Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas Experimentales/genética , Ratones , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-myc , Linfocitos T Reguladores/metabolismo , Escape del Tumor/genética , Proteínas ras
5.
Hepatology ; 76(1): 32-47, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34606648

RESUMEN

BACKGROUND AND AIMS: Intertumoral accumulation of regulatory T cells (Tregs) has been implicated in the pathogenesis of HCC. Because of poor understanding of the immunosuppression mechanism(s) in HCC, immunotherapy is largely unsuccessful for the treatment of HCC. APPROACH AND RESULTS: Hydrodynamic injection (HDI) of c-Myc into mice resulted in enlarged spleens and lethal HCC associated with an increase in hepatic Tregs and depletion of CTLs (cytotoxic T lymphocytes). Malignant hepatocytes in c-Myc mice overproduced TGFß1, which enhanced the suppressor function of Tregs and impaired the proliferation and cytotoxicity of CTLs. In addition to activating TGFß signaling, c-Myc synergized with Yin Yang 1 to impair microRNA-206 (miR-206) biogenesis. HDI of miR-206 fully prevented HCC and the associated enlargement of the spleen, whereas 100% of control mice died from HCC within 5-9 weeks postinjection. Mechanistically, by directly targeting errant kirsten ras oncogene (KRAS) signaling, miR-206 impeded the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) axis that drives expression of Tgfb1. By blocking the KRAS/MEK/ERK axis, miR-206 prevented TGFß1 overproduction, thereby impairing the suppressor function and expansion of Tregs, but enhancing the expansion and cytotoxic program of CTLs. Disrupting the interaction between miR-206 and Kras offset the roles of miR-206 in inhibiting immunosuppression and HCC. Depletion of CD8+ T cells impaired the ability of miR-206 to inhibit HCC. CONCLUSIONS: c-Myc-educated hepatocytes promoted immunosuppression by overproducing TGFß1, which promoted HCC development. miR-206, by attenuating TGFß1 overproduction, disrupted the communication of malignant hepatocytes with CTLs and Tregs, which prevented HCC. miR-206 represents a potential immunotherapeutic agent against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Comunicación , Regulación Neoplásica de la Expresión Génica , Hepatocitos/metabolismo , Neoplasias Hepáticas/patología , Ratones , MicroARNs/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Proto-Oncogénicas p21(ras) , Linfocitos T Reguladores/metabolismo
6.
Gut ; 71(8): 1642-1655, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34706869

RESUMEN

OBJECTIVE: Kupffer cells (KCs) protect against hepatocellular carcinoma (HCC) by communicating with other immune cells. However, the underlying mechanism(s) of this process is incompletely understood. DESIGN: FVB/NJ mice were hydrodynamically injected with AKT/Ras and Sleeping Beauty transposon to induce HCC. Mini-circle and Sleeping Beauty were used to overexpress microRNA-206 in KCs of mice. Flow cytometry and immunostaining were used to evaluate the change in the immune system. RESULTS: Hydrodynamic injection of AKT/Ras into mice drove M2 polarisation of KCs and depletion of cytotoxic T cells (CTLs) and promoted HCC development. M1-to-M2 transition of KCs impaired microRNA-206 biogenesis. By targeting Klf4 (kruppel like factor 4) and, thereby, enhancing the production of M1 markers including C-C motif chemokine ligand 2 (CCL2), microRNA-206 promoted M1 polarisation of macrophages. Indeed, microRNA-206-mediated increase of CCL2 facilitated hepatic recruitment of CTLs via CCR2. Disrupting each component of the KLF4/CCL2/CCR2 axis impaired the ability of microRNA-206 to drive M1 polarisation of macrophages and recruit CTLs. In AKT/Ras mice, KC-specific expression of microRNA-206 drove M1 polarisation of KCs and hepatic recruitment of CTLs and fully prevented HCC, while 100% of control mice died from HCC. Disrupting the interaction between microRNA-206 and Klf4 in KCs and depletion of CD8+ T cells impaired the ability of miR-206 to prevent HCC. CONCLUSIONS: M2 polarisation of KCs is a major contributor of HCC in AKT/Ras mice. MicroRNA-206, by driving M1 polarisation of KCs, promoted the recruitment of CD8+ T cells and prevented HCC, suggesting its potential use as an immunotherapeutic approach.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Linfocitos T CD8-positivos , Carcinoma Hepatocelular/patología , Quimiocinas/metabolismo , Macrófagos del Hígado/metabolismo , Neoplasias Hepáticas/patología , Ratones , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Hepatology ; 69(4): 1488-1503, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30281809

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a major risk factor of many end-stage liver diseases. Alterations in microRNA expression have been reported in patients with NAFLD. However, the transcriptional mechanism(s) of dysregulated microRNAs under the state of NAFLD is poorly described, and microRNAs that regulate the pathogenesis of NAFLD synergistically with their regulators remain unknown. Here we report that microRNA-378 expression is significantly increased in fatty livers of mice and patients with NAFLD. Although microRNA-378 locates within the intron of Ppargc1ß (peroxisome proliferator-activated receptor γ coactivator 1-beta), there was a significant uncoupling of Ppargc1ß mRNA and microRNA-378 levels in both sources of fatty livers. Further studies identified a full-length primary transcript of microRNA-378. LXRα (liver X receptor alpha) functioned as a transcription activator of microRNA-378 and a repressor of Ppargc1ß transcription. It is known that miR-378 is an inhibitor of fatty acid oxidation (FAO) and the function of Ppargc1ß is opposite to that of miR-378. GW3965 treatment (LXRα agonist) of murine hepatocytes and mice increased microRNA-378 and reduced Ppargc1ß, which subsequently impaired FAO and aggravated hepatosteatosis. In contrast, additional treatment of miR-378 inhibitor or Ppargc1ß, which knocked down increased miR-378 or recovered expression of Ppargc1ß, offset the effects of GW3965. Liver-specific ablation of Lxrα led to decreased miR-378 and increased Ppargc1ß, which subsequently improved FAO and reduced hepatosteatosis. Conclusion: Our findings indicated that miR-378 possesses its own transcription machinery, which challenges the well-established dogma that miR-378 transcription is controlled by the promoter of Ppargc1ß. LXRα selectively activates transcription of miR-378 and inhibits expression of Ppargc1ß, which synergistically impairs FAO. In addition to lipogenesis, impaired FAO by miR-378 in part contributes to LXRα-induced hepatosteatosis.


Asunto(s)
Hígado Graso/etiología , Receptores X del Hígado/metabolismo , MicroARNs/biosíntesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Benzoatos , Bencilaminas , ARN Helicasas DEAD-box/metabolismo , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Receptores X del Hígado/agonistas , Masculino , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
8.
J Hepatol ; 70(1): 87-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30218679

RESUMEN

BACKGROUND & AIMS: The progression of hepatosteatosis to non-alcoholic steatohepatitis (NASH) is a critical step in the pathogenesis of hepatocellular cancer. However, the underlying mechanism(s) for this progression is essentially unknown. This study was designed to determine the role of miR-378 in regulating NASH progression. METHODS: We used immunohistochemistry, luciferase assays and immunoblotting to study the role of miR-378 in modulating an inflammatory pathway. Wild-type mice kept on a high-fat diet (HFD) were injected with miR-378 inhibitors or a mini-circle expression system containing miR-378, to study loss and gain-of functions of miR-378. RESULTS: MiR-378 expression is increased in livers of dietary obese mice and patients with NASH. Further studies revealed that miR-378 directly targeted Prkag2 that encodes AMP-activated protein kinase γ 2 (AMPKγ2). AMPK signaling negatively regulates the NF-κB-TNFα inflammatory axis by increasing deacetylase activity of sirtuin 1. By targeting Prkag2, miR-378 reduced sirtuin 1 activity and facilitated an inflammatory pathway involving NF-κB-TNFα. In contrast, miR-378 knockdown induced expression of Prkag2, increased sirtuin 1 activity and blocked the NF-κB-TNFα axis. Additionally, knockdown of increased Prkag2 offset the inhibitory effects of miR-378 inhibitor on the NF-κB-TNFα axis, suggesting that AMPK signaling mediates the role of miR-378 in facilitating this inflammatory pathway. Liver-specific expression of miR-378 triggered the development of NASH and fibrosis by activating TNFα signaling. Ablation of TNFα in miR-378-treated mice impaired the ability of miR-378 to facilitate hepatic inflammation and fibrosis, suggesting that TNFα signaling is required for miR-378 to promote NASH. CONCLUSION: MiR-378 plays a key role in the development of hepatic inflammation and fibrosis by positively regulating the NF-κB-TNFα axis. MiR-378 is a potential therapeutic target for the treatment of NASH. LAY SUMMARY: The recent epidemic of obesity has been associated with a sharp rise in the incidence of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism(s) remains poorly described and effective therapeutic approaches against NAFLD are lacking. The results establish that microRNA-378 facilitates the development of hepatic inflammation and fibrosis and suggests the therapeutic potential of microRNA-378 inhibitor for the treatment of NAFLD.


Asunto(s)
Regulación de la Expresión Génica , Hepatitis/genética , Cirrosis Hepática/genética , MicroARNs/genética , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Biopsia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hepatitis/metabolismo , Hepatitis/patología , Humanos , Immunoblotting , Inmunohistoquímica , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/biosíntesis , Transducción de Señal
9.
Hepatology ; 66(6): 1952-1967, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28714063

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and therapeutic agents for this malignancy are lacking. MicroRNAs play critical roles in carcinogenesis and present tremendous therapeutic potential. Here, we report that microRNA-206 is a robust tumor suppressor that plays important roles in the development of HCC by regulating cell-cycle progression and the cMet signaling pathway. MicroRNA-206 was underexpressed in livers of two HCC mouse models, human individuals bearing HCC, and human HCC cell lines. Combining bioinformatic prediction and molecular and cellular approaches, we identified cMET (Met proto-oncogene), cyclin D1 (CCND1), and cyclin-dependent kinase 6 (CDK6) as functional targets of microRNA-206. By inhibiting expression of cMET, CCND1, and CDK6, microRNA-206 delayed cell-cycle progression, induced apoptosis, and impaired proliferation of three distinct human HCC cell lines. Systemic administration of microRNA-206 completely prevented HCC development in both cMyc and V-Akt murine thymoma viral oncogene homolog 1/neuroblastoma RAS viral oncogene homolog (AKT/Ras) HCC mice, whereas 100% of control mice died from lethal tumor burdens. Conversely, reintroduction of cMet or Cdk6 into livers of cMyc and AKT/Ras HCC mice recovered growth of HCC inhibited by microRNA-206. These results strongly suggested that cMet and Cdk6 were two functional targets that mediated the inhibitory effect of microRNA-206 on the development of HCC. MicroRNA-206 overexpression demonstrated a profound therapeutic effect on HCC in xenograft and cMyc HCC mice. CONCLUSION: In summary, this study defines a potentially critical role of microRNA-206 in preventing the growth of HCC and suggests its use as a potential therapeutic strategy for this malignancy. (Hepatology 2017;66:1952-1967).


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , MicroARNs/uso terapéutico , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Secuencia de Bases , Carcinoma Hepatocelular/enzimología , Línea Celular Tumoral , Ciclina D1/metabolismo , Genes myc , Humanos , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/enzimología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , MicroARNs/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
10.
J Hepatol ; 66(4): 816-824, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28025059

RESUMEN

BACKGROUND & AIMS: The paradox of selective hepatic insulin resistance, wherein the insulin-resistant liver fails to suppress glucose production but continues to produce lipids, has been central to the pathophysiology of hepatosteatosis and hyperglycemia. Our study was designed to investigate the mechanism(s) by which microRNA-206 alleviates the pathogenesis of hepatosteatosis and hyperglycemia. METHODS: Dietary obese mice induced by a high fat diet were used to study the role of microRNA-206 in the pathogenesis of hepatosteatosis and hyperglycemia. A mini-circle vector was used to deliver microRNA-206 into the livers of mice. RESULTS: Lipid accumulation impaired biogenesis of microRNA-206 in fatty livers of dietary obese mice and human hepatocytes (p<0.01). Delivery of microRNA-206 into the livers of dietary obese mice resulted in the strong therapeutic effects on hepatosteatosis and hyperglycemia. Mechanistically, miR-206 interacted with the 3' untranslated region of PTPN1 (protein tyrosine phosphatase, non-receptor type 1) and induced its degradation. By inhibiting PTPN1 expression, microRNA-206 facilitated insulin signaling by promoting phosphorylation of INSR (insulin receptor) and impaired hepatic lipogenesis by inhibiting Srebp1c transcription. By simultaneously modulating lipogenesis and insulin signaling, microRNA-206 reduced lipid (p=0.006) and glucose (p=0.018) production in human hepatocytes and livers of dietary obese mice (p<0.001 and p<0.01 respectively). Re-introduction of Ptpn1 into livers offset the inhibitory effects of microRNA-206, indicating that PTPN1 mediates the inhibitory effects of microRNA-206 on both hepatosteatosis and hyperglycemia. CONCLUSIONS: MicroRNA-206 is a potent inhibitor of lipid and glucose production by simultaneously facilitating insulin signaling and impairing hepatic lipogenesis. Our findings potentially provide a novel therapeutic agent for both hepatosteatosis and hyperglycemia. LAY SUMMARY: The epidemic of obesity is causing a sharp rise in the incidence of insulin resistance and its major complications, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). However, there are no effective treatments because the mechanisms underlying both disorders are not well described. We identified microRNA-206 as a novel and effective inhibitor for both glucose and lipid production in liver and potentially provide a unique therapeutic drug for both hepatosteatosis and hyperglycemia.


Asunto(s)
Hiperglucemia/prevención & control , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Regiones no Traducidas 3' , Animales , Dieta Alta en Grasa/efectos adversos , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Lipogénesis/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
11.
Gut ; 65(11): 1850-1860, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26282675

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major risk factor for hepatocellular carcinoma (HCC). However, the mechanistic pathways that link both disorders are essentially unknown. OBJECTIVE: Our study was designed to investigate the role of microRNA-21 in the pathogenesis of NAFLD and its potential involvement in HCC. METHODS: Wildtype mice maintained on a high fat diet (HFD) received tail vein injections of microRNA-21-anti-sense oligonucleotide (ASO) or miR-21 mismatched ASO for 4 or 8 weeks. Livers were collected after that time period for lipid content and gene expression analysis. Human hepatoma HepG2 cells incubated with oleate were used to study the role of miR-21 in lipogenesis and analysed with Nile-Red staining. microRNA-21 function in carcinogenesis was determined by soft-agar colony formation, cell cycle analysis and xenograft tumour assay using HepG2 cells. RESULTS: The expression of microRNA-21 was increased in the livers of HFD-treated mice and human HepG2 cells incubated with fatty acid. MicroRNA-21 knockdown in those mice and HepG2 cells impaired lipid accumulation and growth of xenograft tumour. Further studies revealed that Hbp1 was a novel target of microRNA-21 and a transcriptional activator of p53. It is well established that p53 is a tumour suppressor and an inhibitor of lipogenesis by inhibiting Srebp1c. As expected, microRNA-21 knockdown led to increased HBP1 and p53 and subsequently reduced lipogenesis and delayed G1/S transition, and the additional treatment of HBP1-siRNA antagonised the effect of microRNA-21-ASO, suggesting that HBP1 mediated the inhibitory effects of microRNA-21-ASO on both hepatic lipid accumulation and hepatocarcinogenesis. Mechanistically, microRNA-21 knockdown induced p53 transcription, which subsequently reduced expression of genes controlling lipogenesis and cell cycle transition. In contrast, the opposite result was observed with overexpression of microRNA-21, which prevented p53 transcription. CONCLUSIONS: Our findings reveal a novel mechanism by which microRNA-21, in part, promotes hepatic lipid accumulation and cancer progression by interacting with the Hbp1-p53-Srebp1c pathway and suggest the potential therapeutic value of microRNA-21-ASO for both disorders.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Oligonucleótidos Antisentido/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Dieta Alta en Grasa/métodos , Perfilación de la Expresión Génica/métodos , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína p53 Supresora de Tumor/metabolismo
12.
Hepatology ; 61(1): 141-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25131933

RESUMEN

UNLABELLED: Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs exist. To identify genes repressed by miRNAs in mature hepatocytes in vivo, we injected adult mice carrying floxed Dicer1 alleles with an adenoassociated viral vector expressing Cre recombinase specifically in hepatocytes. By inactivating Dicer in adult quiescent hepatocytes we avoided the hepatocyte injury and regeneration observed in previous mouse models of global miRNA deficiency in hepatocytes. Next, we combined gene and miRNA expression profiling to identify candidate gene/miRNA interactions involved in hepatic lipid metabolism and validated their function in vivo using antisense oligonucleotides. A candidate gene that emerged from our screen was lipoprotein lipase (Lpl), which encodes an enzyme that facilitates cellular uptake of lipids from the circulation. Unlike in energy-dependent cells like myocytes, LPL is normally repressed in adult hepatocytes. We identified miR-29a as the miRNA responsible for repressing LPL in hepatocytes, and found that decreasing hepatic miR-29a levels causes lipids to accumulate in mouse livers. CONCLUSION: Our screen suggests several new miRNAs are regulators of hepatic lipid metabolism. We show that one of these, miR-29a, contributes to physiological lipid distribution away from the liver and protects hepatocytes from steatosis. Our results, together with miR-29a's known antifibrotic effect, suggest miR-29a is a therapeutic target in fatty liver disease.


Asunto(s)
Metabolismo de los Lípidos , Lipoproteína Lipasa/biosíntesis , Hígado/metabolismo , MicroARNs/metabolismo , Animales , Represión Enzimática , Hígado Graso/etiología , Hepatocitos/metabolismo , Masculino , Ratones Endogámicos C57BL
13.
Hepatology ; 60(2): 554-64, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24677249

RESUMEN

UNLABELLED: The incidence of nonalcoholic fatty liver disease (NAFLD) and hyperlipidemia, with their associated risks of endstage liver and cardiovascular diseases, is increasing rapidly due to the prevalence of obesity. Although the mechanisms of NAFLD have been studied extensively, the underlying pathogenesis and the role of microRNAs in this process remain relatively unclear. MicroRNA (miRNA)-dependent posttranscriptional gene silencing is now recognized as a key element of lipid metabolism. Here we report that the expression of microRNA-24 (miR-24) is significantly increased in the livers of high-fat diet-treated mice and in isolated human hepatocytes incubated with fatty acid. Knockdown of miR-24 in those mice caused impaired hepatic lipid accumulation and reduced plasma triglycerides. Bioinformatic and in vitro and in vivo studies led us to identify insulin-induced gene 1 (Insig1), an inhibitor of lipogenesis, as a novel target of miR-24. Inhibition of endogenous miR-24 expression by way of miR-24 inhibitors led to up-regulation of Insig1, and subsequently decreased hepatic lipid accumulation. It is well established that liver-specific deletion of Insig1 leads to higher hepatic and plasma triglyceride levels by inhibiting the processing of sterol regulatory element-binding proteins (SREBPs), transcription factors that activate lipid synthesis. As expected, miR-24 knockdown prevented SREBP processing, and subsequent expression of lipogenic genes. In contrast, the opposite result was observed with overexpression of miR-24, which enhanced SREBP processing. Thus, our study defines a potentially critical role for deregulated expression of miR-24 in the development of fatty liver by way of targeting of Insig1. CONCLUSION: Our findings show a novel mechanism by which miR-24 promotes hepatic lipid accumulation and hyperlipidemia by repressing Insig1, and suggest the use of miR-24 inhibitor as a potential therapeutic agent for NAFLD and/or atherosclerosis.


Asunto(s)
Hígado Graso/genética , Hígado Graso/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , MicroARNs/metabolismo , Animales , ARN Helicasas DEAD-box/genética , Grasas de la Dieta/farmacología , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Obesidad/genética , Obesidad/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Ribonucleasa III/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/sangre
14.
Hepatology ; 59(1): 202-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23913442

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size. CONCLUSION: Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , MicroARNs/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba , Proteínas ras/metabolismo
15.
Environ Sci Technol ; 49(24): 14048-56, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26506215

RESUMEN

Full-spectrum, ultraviolet (UV), and visible broadband apparent quantum yields (AQYs) for carbon monoxide (CO) photoproduction from chromophoric dissolved organic matter (CDOM) and particulate organic matter (POM) were determined in the Delaware Estuary in two hydrologically contrasting seasons in 2012: an unusually low flow in August and a storm-driven high flow in November. Average AQYs for CDOM and POM in November were 10 and 16 times the corresponding AQYs in August. Maximum AQYs in November occurred in a midestuary particle absorption maximum zone. Although POM AQYs were generally smaller than CDOM AQYs, the ratio of the former to the latter increased substantially from the UV to the visible. In both seasons, UV solar radiation was the primary driver for CO photoproduction from CDOM whereas visible light was the principal contributor to POM-based CO photoproduction. CDOM dominated CO photoproduction in the uppermost water layer while POM prevailed at deeper depths. On a depth-integrated basis, the Delaware Estuary shifted from a CDOM-dominated system in August to a POM-dominated system in November with respect to CO photoproduction. This study reveals that flood events may enhance photochemical cycling of terrigenous organic matter and switch the primary photochemical driver from CDOM to POM.


Asunto(s)
Monóxido de Carbono/química , Estuarios , Contaminantes Químicos del Agua/química , Monóxido de Carbono/análisis , Delaware , Monitoreo del Ambiente/métodos , Inundaciones , Hidrología/métodos , Luz , Procesos Fotoquímicos , Estaciones del Año , Agua/química , Contaminantes Químicos del Agua/análisis
16.
Environ Sci Technol ; 48(16): 9113-21, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25029258

RESUMEN

Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.


Asunto(s)
Monóxido de Carbono/química , Hielos Perennes/química , Alaska , Regiones Árticas , Concentración de Iones de Hidrógeno , Concentración Osmolar , Procesos Fotoquímicos , Ríos , Luz Solar , Temperatura
17.
Oncogene ; 42(39): 2892-2904, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37596320

RESUMEN

Hepatic cholesterol accumulation and hypercholesterolemia are implicated in hepatocellular carcinoma (HCC). However, the therapeutic effects of cholesterol-lowering drugs on HCC are controversial, indicating that the relationship between cholesterol metabolism and HCC is more complex than anticipated. A positive feedback between cholesterol synthesis and the pentose phosphate pathway (PPP) rather than glycolysis was formed in tumors of c-Myc mice. Blocking the PPP prevented cholesterol synthesis and thereby HCC in c-Myc mice, while ablating glycolysis did not affect cholesterol synthesis and failed to prevent c-Myc-induced HCC. Unexpectedly, HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) and G6PD (glucose-6-phosphate dehydrogenase), the rate-limiting enzymes of cholesterol synthesis and the PPP, were identified as direct targets of microRNA-206. By targeting Hmgcr and G6pd, microRNA-206 disrupted the positive feedback and fully prevented HCC in c-Myc mice, while 100% of control mice died of HCC. Disrupting the interaction of microRNA-206 with Hmgcr and G6pd restored cholesterol synthesis, the PPP and HCC growth that was inhibited by miR-206. This study identified a previously undescribed positive feedback loop between cholesterol synthesis and the PPP, which drives HCC, while microRNA-206 prevents HCC by disrupting this loop. Cholesterol synthesis as a process rather than cholesterol itself is the major contributor of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Vía de Pentosa Fosfato , Retroalimentación , Glucólisis , MicroARNs/genética , MicroARNs/metabolismo , Colesterol
18.
Cell Death Dis ; 14(9): 582, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658050

RESUMEN

Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.


Asunto(s)
Neoplasias Colorrectales , Chaperón BiP del Retículo Endoplásmico , Humanos , Macrófagos Asociados a Tumores , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fluorouracilo/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Factor de Transcripción Activador 6 , Receptores CCR4 , Quimiocinas CXC
19.
Sci Bull (Beijing) ; 68(24): 3172-3180, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37839915

RESUMEN

A dissolved-oxygen seawater battery (SWB) can generate electricity by reducing dissolved oxygen and sacrificing the metal anode at different depths and temperatures in the ocean, acting as the basic unit of spatially underwater energy networks for future maritime exploration. However, most traditional oxygen reduction reaction (ORR) catalysts are out of work at such ultralow dissolved oxygen concentration. Here, we proposed that the electronic axial stretching of the catalyst is essentially responsible for enhancing the catalyst's sensitivity to dissolved oxygen. By modulating the lattice of iron phthalocyanine (FePc) as a model catalyst, the unique electronic axial stretching in the z-direction of planar FePc molecules was realized to achieve a boosted adsorption and electron transfer and result in a much improved ORR activity in lean-oxygen seawater environment. The peak power density of a homemade SWB using a practical carbon brush electrode decorated by the FePc is estimated to be as high as 3 W L-1. These results provide inspiring insights into the interaction between the catalyst and complicated seawater environment, and propose the electronic axial stretching as an effective indicator for the rational design of catalysts to be used in extremely lean-oxygen environment.

20.
Proc Natl Acad Sci U S A ; 106(19): 7695-701, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19372371

RESUMEN

By using a whole-genome oligonucleotide microarray, designed based on known and predicted indica rice genes, we investigated transcriptome profiles in developing leaves and panicles of superhybrid rice LYP9 and its parental cultivars 93-11 and PA64s. We detected 22,266 expressed genes out of 36,926 total genes set collectively from 7 tissues, including leaves at seedling and tillering stages, flag leaves at booting, heading, flowering, and filling stages, and panicles at filling stage. Clustering results showed that the F1 hybrid's expression profiles resembled those of its parental lines more than that which lies between the 2 parental lines. Out of the total gene set, 7,078 genes are shared by all sampled tissues and 3,926 genes (10.6% of the total gene set) are differentially expressed genes (DG). As we divided DG into those between the parents (DG(PP)) and between the hybrid and its parents (DG(HP)), the comparative results showed that genes in the categories of energy metabolism and transport are enriched in DG(HP) rather than in DG(PP). In addition, we correlated the concurrence of DG and yield-related quantitative trait loci, providing a potential group of heterosis-related genes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Oryza/genética , Oryza/metabolismo , Mapeo Cromosómico , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Vigor Híbrido , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA